- -

Blood and hair as non-invasive trace element biological indicators in growing rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Blood and hair as non-invasive trace element biological indicators in growing rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Papadomichelakis, George es_ES
dc.contributor.author Pappas, Athanasios C es_ES
dc.contributor.author Zoidis, Evangelos es_ES
dc.contributor.author Danezis, Georgios es_ES
dc.contributor.author Georgiou, Konstantinos A es_ES
dc.contributor.author Fegeros, Konstantinos es_ES
dc.date.accessioned 2019-03-29T13:25:29Z
dc.date.available 2019-03-29T13:25:29Z
dc.date.issued 2019-03-29
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/118778
dc.description.abstract [EN] The suitability of blood and hair as non-invasive tools to monitor trace element contents was studied in 48 Hyla male growing rabbits. Three diets with increasing organic selenium (Se) addition (0.1, 0.5 and 2.5 mg/kg) were used to induce alterations in the concentrations of trace elements vs. an unsupplemented diet. In blood, a linear decrease in Co (P<0.001), Cu (P<0.001), Mn (P<0.05), Zn (P<0.05), Sb (P<0.001), As (P<0.001), Cr (P<0.001), Mo (P<0.001), Ni (P<0.001) and Cd (P<0.001) concentrations with increasing dietary Se was observed. In hair, a cubic effect of dietary Se on Co (P<0.01), Cu (P<0.05), Mn (P<0.001), Pb (P<0.05), Mo (P<0.05) and Cd (P<0.05) concentrations was found, while As, Cr and Ni concentrations decreased linearly (P<0.01, P<0.01 and P<0.001, respectively) with increasing dietary Se. Selenium was negatively correlated to Sb, As, Cr, Mo, Ni and Cd, (P<0.001) in blood, and to As (P<0.05), Cr, Ni (P<0.01) and Pb (P<0.05) in hair. The contents of Se, As, Cr and Ni in blood were highly correlated (P<0.001) to those in hair. Blood appeared to be more sensitive than hair in detecting small changes in the trace element profile in rabbits, as was indicated by the discriminant analysis. In conclusion, blood and hair can be suitable biological indicators of essential, toxic and potentially toxic trace element status in rabbits, particularly when used complementarily. es_ES
dc.description.sponsorship The authors are grateful to NUEVO S.A. (N Artaki, Euboia, Greece) for providing Sel-Plex®. This research has not received any specific funding. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof World Rabbit Science
dc.rights Reserva de todos los derechos es_ES
dc.subject Biological indicators es_ES
dc.subject Blood es_ES
dc.subject Hair es_ES
dc.subject Organic selenium es_ES
dc.subject Rabbits es_ES
dc.subject Trace elements es_ES
dc.title Blood and hair as non-invasive trace element biological indicators in growing rabbits es_ES
dc.type Artículo es_ES
dc.date.updated 2019-03-29T13:10:21Z
dc.identifier.doi 10.4995/wrs.2019.10654
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Papadomichelakis, G.; Pappas, AC.; Zoidis, E.; Danezis, G.; Georgiou, KA.; Fegeros, K. (2019). Blood and hair as non-invasive trace element biological indicators in growing rabbits. World Rabbit Science. 27(1):21-30. https://doi.org/10.4995/wrs.2019.10654 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2019.10654 es_ES
dc.description.upvformatpinicio 21 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27
dc.description.issue 1
dc.identifier.eissn 1989-8886
dc.description.references Barbosa F.J., Tanus-Santos J.E., Gerlach R.F., Parsons P.J. 2005. A critical review of biomarkers used for monitoring human exposure to lead: advantages, limitations, and future needs. Environ. Health Persp., 113: 1669-1674. https://doi.org/10.1289/ehp.7917 es_ES
dc.description.references Bryan C.E., Christopher S.J., Balmer B.C., Wells R.S. 2007. Establishing baseline levels of trace elements in blood and skin of bottlenose dolphins in Sarasota Bay, Florida: implications for non-invasive monitoring. Sci. Total Environ., 388: 325-342. https://doi.org/10.1016/j.scitotenv.2007.07.046 es_ES
dc.description.references Čobanová K., Chrastinová Ľ., Chrenková M., Polačiková M., Formelová Z., Ivanišinová O., Ryzner M., Grešáková Ľ. 2018. The effect of different dietary zinc sources on mineral deposition and antioxidant indices in es_ES
dc.description.references rabbit tissues World Rabbit Sci., 26: 241-248. https://doi.org/10.4995/wrs.2018.9206 es_ES
dc.description.references de Blas C., Mateos G.G. 2010. Feed formulation. In 'The Nutrition of the Rabbit (2nd ed.)'. C de Blas, J. Wiseman (Eds.) 222-231. CAB International: Wallingford, UK. https://doi.org/10.1079/9781845936693.0222 es_ES
dc.description.references De Temmerman L., Vanongeval L., Boon W., Hoenig M., Geypens M. 2003. Heavy metal content of arable soils in northern Belgium. Water Air Soil Poll., 148: 61-76. https://doi.org/10.1023/A:1025498629671 es_ES
dc.description.references FEDNA (2003). Fundación Española para el Desarrollo de la Nutrición Animal. In C. De Blas, G. G. Mateos, & P. G. Rebollar (Eds.), Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos (2nd ed.). Madrid, Spain: FEDNA. es_ES
dc.description.references Georgiou C.A., Koupparis M.A. 1990. Automated flow injection spectrophotometric determination of para- and metasubstituted phenols of pharmaceutical interest based on their oxidative condensation with 1-nitroso-2-naphthol. Analyst, 115: 309-313. https://doi.org/10.1039/an9901500309 es_ES
dc.description.references Georgiou C.A., Danezis G.P. 2015. Elemental and isotopic mass spectrometry. In 'Advanced Mass Spectrometry for Food, Comprehensive Analytical Chemistry'. (Ed. Y Pico) 131-243. Elsevier: Amsterdam. https://doi.org/10.1016/B978-0-444-63340-8.00003-0 es_ES
dc.description.references Glynn A.W., Ilback N.G., Brabencova D., Carlsson L., Enqvist E.C., Netzel E., Oskarsson A. 1993. Influence of sodium selenite on 203Hg absorption, distribution and elimination in male mice exposed to methyl 203Hg. Biol. Trace Elem. Res., 39: 91-107. https://doi.org/10.1007/BF02783813 es_ES
dc.description.references Gulson B.L., Mizon K.J., Korsch M.J., Howarth D., Phillips A., Hall J. 1996. Impact on blood lead in children and adults following relocation from their source of exposure and contribution of skeletal tissue to blood lead. B. Environ. Contam. Tox., 56: 543-550. https://doi.org/10.1007/s001289900078 es_ES
dc.description.references Hasan M.Y., Kosanovic M., Fahim M.A., Adem A., Petroianu G. 2004. Trace metal profiles in hair samples from children in urban and rural region of the United Arab Emirates. Vet. Hum. Toxicol., 46: 119-121. es_ES
dc.description.references He K. 2011. Trace elements in nails as biomarkers in clinical research. Eur. J. Clin. Invest., 41: 98-102. es_ES
dc.description.references https://doi.org/10.1111/j.1365-2362.2010.02373.x es_ES
dc.description.references Käkelä R., Käkelä A., Hyvärinen H. 1999. Effects of nickel chloride on reproduction of the rat and possible antagonistic role of selenium. Comp. Biochem. Physiol. C, 123: 27-37. es_ES
dc.description.references https://doi.org/10.1016/S0742-8413(99)00006-7 es_ES
dc.description.references Kan C.A., Meijer G.A.L. 2007. The risk of contamination of food with toxic substances present in animal feed. Anim. Feed Sci. Technol., 133: 84-108. https://doi.org/10.1016/j.anifeedsci.2006.08.005 es_ES
dc.description.references Keil D.E., Berger-Ritchie J., McMillin G.A. 2011. Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Labmedicine, 42: 735-742. https://doi.org/10.1309/LMYKGU05BEPE7IAW es_ES
dc.description.references Klotz L.O., Kröncke K.D., Buchczyk D.P., Sies H. 2003. Role of copper, zinc, selenium and tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr., 133: 1448-1451. https://doi.org/10.1093/jn/133.5.1448S es_ES
dc.description.references Levander O.A. 1977. Metabolic interrelationships between arsenic and selenium. Environ. Health Persp., 19: 159-164. https://doi.org/10.1289/ehp.7719159 es_ES
dc.description.references López-Alonso M.L., Benedito J.L., Miranda M., Castillo C., Hernández J., Shore R.F. 2002. Cattle as biomonitors of soil arsenic, copper and zinc concentrations in Galicia (NW Spain). Arch. Environ. Contam. Toxicol., 43: 103-108. https://doi.org/10.1007/s00244-002-1168-5 es_ES
dc.description.references McDowell L.R. 2003. 'Minerals in animal and human nutrition (2nd ed)'. (Elsevier Science: Amsterdam). es_ES
dc.description.references Milošković A., Simić V. 2015. Arsenic and other trace elements in five edible fish species in relation to fish size and weight and potential health risks for human consumption. Pol. J. Environ. Stud., 24: 199-206. https://doi.org/10.15244/pjoes/24929 es_ES
dc.description.references Miranda M., López-Alonso M., Castillo C., Hernández J., Benedito J.L. 2005. Effects of moderate pollution on toxic and trace metal levels in calves from a polluted area of northern Spain. Environ. Int., 31: 543-548. es_ES
dc.description.references https://doi.org/10.1016/j.envint.2004.09.025 es_ES
dc.description.references Ohta H., Seki Y., Yoshikawa H. 1995. Interactive effects of selenium on chronic cadmium toxicity in rats. ACES Bulletin, 8: 97-104. Othman A.I., El Missiry M.A. 1998. Role of selenium against lead toxicity in male rats. J. Biochem. Mol. Toxic., 12: 345-349. https://doi.org/10.1002/(SICI)1099-0461(1998)12:6%3C345::AID-JBT4%3E3.0.CO;2-V es_ES
dc.description.references Papadomichelakis G., Zoidis E., Pappas A.C., Mountzouris K.C., Fegeros K. 2017. Effects of increasing dietary organic selenium levels on meat fatty acid composition and oxidative stability in growing rabbits. Meat Sci., 131: 132-138. https://doi.org/10.1016/j.meatsci.2017.05.006 es_ES
dc.description.references Papadomichelakis G., Zoidis E., Pappas A.C., Danezis G., Georgiou C.A., Fegeros K. 2018. Dietary organic selenium addition and accumulation of toxic and essential trace elements in liver and meat of growing rabbits. Meat Sci., 145: 383-388. https://doi.org/10.1016/j.meatsci.2018.07.022 es_ES
dc.description.references Pappas A.C., Zoidis E., Georgiou C.A., Demiris N., Surai P.F., Fegeros K. 2011. Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system es_ES
dc.description.references of chicken. Food Addit. Contam. Part A, 28: 446-454. https://doi.org/10.1080/19440049.2010.549152 es_ES
dc.description.references Park D.U., Kim D.S., Yu S.D., Lee K.M., Ryu S.H., Kim S.G. et al. 2014. Blood levels of cadmium and lead in residents near abandoned metal mine areas in Korea. Environ. Monit. Assess., 186: 5209-5220. https://doi.org/10.1007/s10661-014-3770-1 es_ES
dc.description.references Patra R.C., Swarup D., Naresh R., Kumar P., Nandi D., Shekhar P., Roy S., Ali S.L. 2007. Tail hair as an indicator of environmental exposure of cows to lead and cadmium in different industrial areas. Ecotoxicol. Environ. Saf., 66: 127-131. https://doi.org/10.1016/j.ecoenv.2006.01.005 es_ES
dc.description.references Paukert J., Obrusnik I. 1986. The hair of the common hare (Lepus europaeus Pall.) and of the common vole (Microtus arvalis Pall.) as indicator of the environmental pollution. J. Hyg. Epidem. Microb. Imm., 30: 27-32. es_ES
dc.description.references Paulsson K., Lundbergh K. 1989. The selenium method for treatment of lakes for elevated levels of mercury in fish. Sci. Total Environ., 87-88: 495-507. https://doi.org/10.1016/0048-9697(89)90256-8 es_ES
dc.description.references Perrone L., Moro R., Caroli M., Universit S., Fisiche S., Federico N. 1996. Trace elements in hair of healthy children sampled by age and sex. Biol. Trace Elem. Res., 51: 71-76. https://doi.org/10.1007/BF02790149 es_ES
dc.description.references Raab A., Hansen H.R., Zhuang L.Y., Feldmenn J. 2002. Arsenic accumulation and speciation analysis in wool from sheep exposed to arsenosugars. Talanta, 58: 167-176. es_ES
dc.description.references https://doi.org/10.1016/S0039-9140(02)00257-6 es_ES
dc.description.references Reis L.S.L.S., Pardo P.E., Camargo A., Oba E. 2010. Mineral element and heavy metal poisoning in animals. Int. J. Med. Med. Sci., 1: 560-579. es_ES
dc.description.references Rogowska K.A., Monkiewicz J., Grosicki A. 2009. Lead, cadmium, arsenic, copper, and zinc contents in the hair of cattle living in the area contaminated by a copper smelter in 2006-2008. B. Vet. I. Pulawy, 53: 703-706. es_ES
dc.description.references Samanta G., Sharma R., Roychowdhury T., Chakraborti D. 2004. Arsenic and other elements in hair, nails, and skinscales of arsenic victims in West Bengal, India. Sci. Total Environ., 326: 33-47. https://doi.org/10.1016/j.scitotenv.2003.12.006 es_ES
dc.description.references Sanna E., Liguori A., Palmas L., Sor M.R., Floris G. 2003. Blood and hair lead levels in boys and girls living in two Sardinian towns at different risks of lead pollution. Ecotoxicol. Environ. Saf., 55: 293-299. https://doi.org/10.1016/S0147-6513(02)00072-6 es_ES
dc.description.references Sarmani S. 1987. A study of trace elements concentrations in human hair of some local population in Malaysia. J. Radioanal. Nucl. Chem., 110: 627-632. https://doi.org/10.1007/BF02035551 es_ES
dc.description.references Shanker K., Mishra S., Srivastava S., Srivastava R., Dass S., Prakash S., Srivastava M.M. 1996. Study of mercuryselenium (Hg-Se) interactions and their impact on Hg uptake by the radish (Raphanus sativus) plant. Food Chem. Toxic., 34: 883-886. es_ES
dc.description.references https://doi.org/10.1016/S0278-6915(96)00047-6 es_ES
dc.description.references Shen S., Li X.F., Cullen W.R., Weinfeld M., Le X.C. 2013. Arsenic binding to proteins. Chem. Rev., 113: 7769-7792. https://doi.org/10.1021/cr300015c es_ES
dc.description.references Soudani N., Amara I.B., Sefi M., Boudawara T., Zeghal N. 2011. Effects of selenium on chromium (VI)-induced hepatotoxicity in adult rats. Exp. Toxicol. Pathol., 63: 541-548. https://doi.org/10.1016/j.etp.2010.04.005 es_ES
dc.description.references Templeton G.F. 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst., 28: 41-58. https://doi.org/10.17705/1CAIS.02804 es_ES
dc.description.references Underwood E.J., Suttle N.F. 1999. 'The mineral nutrition of livestock (3rd ed.)'. CAB International: Wallingford, UK. 343-373. https://doi.org/10.1079/9780851991283.0000 es_ES
dc.description.references Valko M., Morris H., Cronin M.T.D. 2005. Metals, toxicity and oxidative stress. Curr. Med. Chem., 12: 1161-1208. https://doi.org/10.2174/0929867053764635 es_ES
dc.description.references Waegeneers N., Pizzolon J.C., Hoenig M., De Temmerman L. 2009. Accumulation of trace elements in cattle from rural and industrial areas in Belgium. Food Addit. Contam. A, 26: 326-332. https://doi.org/10.1080/02652030802429096 es_ES
dc.description.references Wangher P.D. 2001. Selenium and the brain: a review. Nutr. Neurosci., 4: 81-97. https://doi.org/10.1080/1028415X.2001.11747353 es_ES
dc.description.references Xing R., Li Y., Zhang B., Li H., Liao X. 2017. Indicative and complementary effects of human biological indicators for heavy metal exposure assessment. Environ. Geochem. Hlth., 39: 1031-1043. https://doi.org/10.1007/s10653-016-9870-9 es_ES
dc.description.references Zoidis E., Pappas A.C., Georgiou C.A., Komaitis Ε., Feggeros K. 2010. Selenium affects the expression of GPx4 and catalase in the liver of chicken. Comp. Biochem. Physiol. B, 155: 294-300. https://doi.org/10.1016/j.cbpb.2009.11.017 es_ES
dc.description.references Żukowska J., Biziuk M. 2008. Methodological evaluation of method for dietary heavy metal intake. J. Food Sci., 73: 21-29. https://doi.org/10.1111/j.1750-3841.2007.00648.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem