- -

Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Boroduleva, Anna Yu. es_ES
dc.contributor.author Manclus Ciscar, Juan José es_ES
dc.contributor.author Montoya, Ángel es_ES
dc.contributor.author Eremin, Sergei A. es_ES
dc.date.accessioned 2019-04-07T20:05:57Z
dc.date.available 2019-04-07T20:05:57Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1618-2642 es_ES
dc.identifier.uri http://hdl.handle.net/10251/119053
dc.description.abstract [EN] Fluorescence polarization immunoassays (FPIAs) for thiabendazole and tetraconazole were first developed. Tracers for FPIAs of thiabendazole and tetraconazole were synthesized and the tracers' structures were confirmed by HPLC-MS/MS. The 4-aminomethylfluorescein-labeled tracers allowed achieving the best assay sensitivity and minimum reagent consumption in comparison with aminofluorescein-labeled and alkyldiaminefluoresceinthiocarbamyl-labeled tracers. Measurements of fluorescence polarization were performed using a portable device. The developed FPIA methods were applied for the analysis of wheat. Fast and simple sample preparation technique earlier developed by authors for pesticides was adapted for thiabendazole and tetraconazole. The limits of detection of thiabendazole and tetraconazole in wheat were 20 and 200g/kg, and the lower limits of quantification were 40 and 600g/kg, respectively. The recovery test was performed by two methodsFPIA and HPLC-MS/MS. The results obtained by FPIA correlated well with those obtained by HPLC-MS/MS (r(2)=0.9985 for thiabendazole, r(2)=0.9952 for tetraconazole). Average recoveries of thiabendazole and tetraconazole were 744% and 723% by FPIA, and average recoveries of thiabendazole and tetraconazole were 86 +/- 2% and 74 +/- 1% by HPLC-MS/MS (n=15). es_ES
dc.description.sponsorship The work was financially supported by the Russian Science Foundation (project No. 14-16-00149).
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Fungicides es_ES
dc.subject Thiabendazole es_ES
dc.subject Tetraconazole es_ES
dc.subject Fluorescence polarization immunoassay es_ES
dc.subject Wheat es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-018-1296-z es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RFBR//4-16-00149/
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2019-10-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Boroduleva, AY.; Manclus Ciscar, JJ.; Montoya, Á.; Eremin, SA. (2018). Fluorescence polarization immunoassay for rapid screening of the pesticides thiabendazole and tetraconazole in wheat. Analytical and Bioanalytical Chemistry. 410(26):6923-6934. https://doi.org/10.1007/s00216-018-1296-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00216-018-1296-z es_ES
dc.description.upvformatpinicio 6923 es_ES
dc.description.upvformatpfin 6934 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 410 es_ES
dc.description.issue 26 es_ES
dc.identifier.pmid 30094787
dc.relation.pasarela S\369058 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Russian Science Foundation
dc.description.references Robinson HJ, Stoerk HC, Graessle OE. Studies on the toxicologic and pharmacologic properties of thiabendazole. Toxicol Appl Pharmacol. 1965;7:53–63. es_ES
dc.description.references Abbassy MA, Marzouk MA, Nasr HM, Mansy AS. Effect of imidacloprid and tetraconazole on various hematological and biochemical parameters in male albino rats (Rattus norvegious). J Pol Sci Pub Aff. 2014;2:7. es_ES
dc.description.references European Commission, Regulation (EC) No 2017/1164 amending Annexes II and III to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for acrinathrin, metalaxyl and thiabendazole in or on certain products. Off J EU L170. 2017:3–30. es_ES
dc.description.references Hygienic standard GN 1.2.3539-18. Hygienic standards for pesticide residues in environmental samples (list). 2018. In Russian. 〈 http://docs.cntd.ru/document/557532326 . Accessed 07.07.2018). es_ES
dc.description.references European Commission, Regulation (EC) No 822/2009 amending Annexes II, III and IV to Regulation (EC) No 396/2005 of the European Parliament and of the Council as regards maximum residue levels for azoxystrobin, atrazine, chlormequat, cyprodinil, dithiocarbamates, fludioxonil, fluroxypyr, indoxacarb, mandipropamid, potassium tri-iodide, spirotetramat, tetraconazole, and thiram in or on certain products. Off J EU L239. 2009:5–45. es_ES
dc.description.references García-Fernández M, Díaz-Álvarez M, Martín-Esteban A. Molecularly imprinted magnetic nanoparticles for the micro solid-phase extraction of thiabendazole from citrus samples. J Sep Sci. 2017;40:2638–44. es_ES
dc.description.references Yu QW, Sun H, Wang K, He HB, Feng YQ. Monitoring of carbendazim and thiabendazole in fruits and vegetables by SiO2@ NiO-based solid-phase extraction coupled to high-performance liquid chromatography-fluorescence detector. Food Anal Methods. 2017;10:2892–901. es_ES
dc.description.references Alves AA, Rodrigues AS, Barros EBP, Uekane TM, Bizzo HR, Rezende CM. Determination of pesticides residues in Brazilian grape juices using GC-MS-SIM. Food Anal Methods. 2014;7:1834–9. es_ES
dc.description.references Zhang H, Qian M, Wang X, Wang X, Xu H, Qi P, et al. Analysis of tebuconazole and tetraconazole enantiomers by chiral HPLC-MS/MS and application to measure enantioselective degradation in strawberries. Food Anal Methods. 2012;5:1342–8. es_ES
dc.description.references Bordagaray A, García-Arrona R, Millán E. Development and application of a screening method for triazole fungicide determination in liquid and fruit samples using solid-phase microextraction and HPLC-DAD. Anal Methods. 2013;5:2565–71. es_ES
dc.description.references Aquino A, Navickiene S. MSPD procedure for determination of carbofuran, pyrimethanil and tetraconazole residues in banana by GC–MS. Chromatographia. 2009;70:1265–9. es_ES
dc.description.references Dankwardt A, Pullen S, Hock B. Immunoassays: applications for the aquatic environment. In: Wells PG, Lee K, Blaise C, editors. Microscale testing in aquatic toxicology. Boca Raton: CRC Press; 2018. p. 13–29. es_ES
dc.description.references Wells MJM, Bell KY, Traexler KA, Pellegrin M-L, Morse A. Emerging pollutants. Water Environ Res. 2011;82(10):2095–70. es_ES
dc.description.references Abad A, Manclús JJ, Moreno MJ, Montoya A. Determination of thiabendazole in fruit juices by a new monoclonal enzyme immunoassay. J AOAC Int. 2001;84:156–61. es_ES
dc.description.references Τsialla Z, Ucles-Moreno A, Petrou P, Fernandez-Alba AR, Κakabakos SE. Development of an indirect enzyme immunoassay for the determination of thiabendazole in white and red wines. Int J Environ Anal Chem. 2015;95:1299–309. es_ES
dc.description.references Uclés A, García AV, García MDG, del Real AMA, Fernández-Alba AR. Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal Methods. 2015;7:9158–65. es_ES
dc.description.references Blažková M, Rauch P, Fukal L. Strip-based immunoassay for rapid detection of thiabendazole. Biosens Bioelectron. 2010;25:2122–8. es_ES
dc.description.references Estevez MC, Belenguer J, Gomez-Montes S, Miralles J, Escuela AM, Montoya A, et al. Indirect competitive immunoassay for the detection of fungicide thiabendazole in whole orange samples by surface plasmon resonance. Analyst. 2012;137:5659–65. es_ES
dc.description.references Cairoli S, Arnoldi A, Pagani S. Enzyme-linked immunosorbent assay for the quantitation of the fungicide tetraconazole in fruits and fruit juices. J Agric Food Chem. 1996;44:3849–54. es_ES
dc.description.references Manclús JJ, Moreno MJ, Plana E, Montoya A. Development of monoclonal immunoassays for the determination of triazole fungicides in fruit juices. J Agric Food Chem. 2008;56:8793–800. es_ES
dc.description.references Plana E, Moreno MJ, Montoya Á, Manclús JJ. Development and application of recombinant antibody-based immunoassays to tetraconazole residue analysis in fruit juices. Food Chem. 2014;143:205–13. es_ES
dc.description.references Feng J, Hu Y, Grant E, Lu X. Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018;239:816–22. es_ES
dc.description.references Smith DS, Eremin SA. Fluorescence polarization immunoassays and related methods for simple, high-throughput screening of small molecules. Anal Bioanal Chem. 2008;391:1499–07. es_ES
dc.description.references Eremin SA, Smith DS. Fluorescence polarization immunoassays for pesticides. Comb Chem High Throughput Screen. 2003;6:257–66. es_ES
dc.description.references Boroduleva AY, Wu J, Yang Q, Li H, Zhang Q, Li P, et al. Development of fluorescence polarization immunoassays for parallel detection of pesticides carbaryl and triazophos in wheat grains. Anal Methods. 2017;9:6814–22. es_ES
dc.description.references Pourfarzaneh M, White GW, Landon J, Smith DS. Cortisol directly determined in serum by fluoroimmunoassay with magnetizable solid phase. Clin Chem. 1980;26:730–3. es_ES
dc.description.references Mi T, Liang X, Ding L, Zhang S, Eremin SA, Beier RC, et al. Development and optimization of a fluorescence polarization immunoassay for orbifloxacin in milk. Anal Methods. 2014;6:3849–57. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem