- -

Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)

Mostrar el registro completo del ítem

Paches Giner, MAV.; Aguado García, D.; Martínez-Guijarro, MR.; Romero Gil, I. (2019). Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community). Environmental Science and Pollution Research. 26(14):14266-14276. https://doi.org/10.1007/s11356-019-04660-x

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/121350

Ficheros en el ítem

Metadatos del ítem

Título: Long-term study of seasonal changes in phytoplankton community structure in the western Mediterranean (Valencian Community)
Autor: Paches Giner, Maria Aguas Vivas Aguado García, Daniel Martínez-Guijarro, Mª Remedios Romero Gil, Inmaculada
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Ecosystem-based management is one of the strategies to protect the coastal areas. One of the key elements is phytoplankton community composition since it represents a good indicator of anthropogenic pressures. This ...[+]
Palabras clave: Mediterranean Sea , Phytoplankton , Seasonality , Anthropogenic pressure
Derechos de uso: Reserva de todos los derechos
Fuente:
Environmental Science and Pollution Research. (issn: 0944-1344 )
DOI: 10.1007/s11356-019-04660-x
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11356-019-04660-x
Tipo: Artículo

References

Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22:GB3001. https://doi.org/10.1029/2007GB003154

Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091

Buitenhuis E, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46 [+]
Alvain S, Moulin C, Dandonneau Y, Loisel H (2008) Seasonal distribution and succession of dominant phytoplankton groups in the global ocean: a satellite view. Glob Biogeochem Cycles 22:GB3001. https://doi.org/10.1029/2007GB003154

Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091

Buitenhuis E, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global ocean. Earth Syst Sci Data 4:37–46

Casas B, Varela M, Canle M, González N, Bodea A (1997) Seasonal variations of nutrients, seston and phytoplankton, and upwelling intensity off La Coruña (NW Spain). Estuar Coast Shelf Sci 44:767–778

Cerino F, Zingone A (2006) A survey of cryptomonad diversity and seasonality at a coastal Mediterranean site. Eur J Phycol 41:363–378

Chen B, Liu H (2010) Relationships between phytoplankton growth and cell size in surface oceans: interactive effects of temperature, nutrients, and grazing. Limnol Oceanogr 55:965–972

Chisholm SW (1992) Phytoplankton size. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, Boston

Claudet J, Fraschetti S (2010) Human-driven impacts on marine habitats: a regional meta-analysis in the Mediterranean Sea. Biol Conserv 143:2195–2206

Cloern JE, Foster SQ, Kleckner AE (2014) Phytoplankton primary production in the world’s estuarine-coastal. Biogeosciences 11:2477–2501. https://doi.org/10.5194/bg-11-2477-2014

Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951

Edwards M, Richardson AJ (2004) Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430:881–884

Falkowski PG, Barber RT, Smetacek V (1998) Biogeochemical controls and feedbacks on ocean primary production. Science 281:200–206

Hair JE, Anderson RE, Tatham RL, Black WC (2006) Multivariate data analysis, 5th edn. Prentice Hall, Upper Saddle River

Hoef-Emden K (2014) Osmotolerance in the Cryptophyceae: jacks-of-all trades in the Chroomonas clade. Protist. 165:123–143

Jones RI (2000) Mixotrophy in planktonic protists: an overview. Freshw Biol 45:219–226

Kaiser H (1974) An index of factorial simplicity. Psychometrika 39:31–36

Kirkwood D, Aminot A, Pertillä M (1991) Report on the results of the fourth intercomparison exercise for nutrients in sea water. ICES Cooperative Research Report, n°174

Lejeusne C, Chevaldonne P, Pergent-Martini C, Boudouresque CF, Perez T (2010) Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea. Trends Ecol Evol 25:250–260

Lepistö L, Holopainen A (2003) Occurrence of Cryptophyceae and katablepharids in boreal lakes. Hydrobiologia 502:307–310

Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Annu Rev Ecol Evol Syst 39:615–639

Lund JWG, Kipling C, Le Cren ED (1958) The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11:143–170

Marie D, Zhu F, Balaguer V, Ras J, Vaulot D (2006) Eukaryotic picoplankton communities of the Mediterranean Sea in summer assessed by molecular approaches (DGGE, TTGE, QPCR). FEMS Microbiol Ecol 55:403–415

Micheli F, Halpern B, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS One 8(12):e79889. https://doi.org/10.1371/journal.pone.0079889

Moisan JR, Moisan TA, Abbot MR (2002) Modelling the effect of temperature on the maximum growth rates of phytoplankton populations. Ecol Model 153:197–215

Morán XAG (2007) Annual cycle of picophytoplankton photosynthesis and growth rates in a temperate coastal ecosystem: a major contribution to carbon fluxes. Aquat Microb Ecol 49:267–279

Niemi G, Wardrop D, Brooks R, Anderson S, Brady V, Paerl H, Rakocinski C, Brouwer M, Levinson B, McDonald M (2004) Rationale for a new generation of indicators for coastal waters. Environ Health Perspect 112:979–986

Pachés M, Romero I, Hermosilla Z, Martínez-Guijarro R (2012) Phymed: an ecological classification system for the water framework directive based on phytoplankton community composition. Ecol Indic 19:15–23

Palenik B, Grimwoodc J, Aerts A, Rouzé P, Salamov A, Putnam N (2007) The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 104:7705–7710

Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, London

Reynolds CS (2006) The ecology of phytoplankton. Cambridge University Press, Cambridge

Reynolds CS, Huszar V, Kruk C, Naselli-Flores L, Melo S (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428. https://doi.org/10.1093/plankt/24.5.417

Ribera d’Alcalà M, Conversano F, Corato F, Licandro P, Mangoni O, Marino D, Mazzocchi MG, Modigh M, Montresor M, Nardella M, Saggiomo V, Sarno D, Zingone A (2004) Seasonal patterns in plankton communities in a pluriannual time series at a coastal Mediterranean site (gulf on Naples): an attempt to discern recurrences and trends. Sci Mar 68:65–83

Romero I, Pachés M, Martínez-Guijarro R, Ferrer J (2013) Glophymed: an index to establish the ecological status for the water framework directive based on phytoplankton in coastal waters. Mar Pollut Bull 75:218–223. https://doi.org/10.1016/j.marpolbul.2013.07.028

Sammartino M, Di Cicco A, Marullo S, Santoleri R (2015) Spatio-temporal variability of micro-, nano- and pico-phytoplankton in the Mediterranean Sea from satellite ocean colour data of SeaWiFS. Ocean Sci 11:759–778. https://doi.org/10.5194/os-11-759-2015

Smayda TJ (1980) Phytoplankton succession. In: Morris I (ed) Physiological ecology of phytoplankton, studies in ecology. Blackwell, Oxford, pp 493–570

Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Chang Biol 14:1199–1120

Sournia A (1978) Phytoplankton manual. Monographs on oceanographic methodology. UNESCO

Spanish Ministry of Agriculture, Fisheries and the Environment (2018) http://www.marm.es/siar/Informacion.asp . Accessed May 2018

Treguer P, Le Corre P (1975) Manuel d’analyse des nutritifs dans l’eau de mer. Université de Bretagne Occidentale, Brest

Vargo GA (1978) Using a fluorescence microscope. In: Sournia A (ed) Phytoplankton manual. MG Oceanography Metodology. UNESCO: 108–112

Winder M, Cloern JE (2010) The annual cycles of phytoplankton biomass. Philos Trans R Soc B 365:3215–3226

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem