- -

Five genomic regions have a major impact on fat composition in Iberian pigs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Five genomic regions have a major impact on fat composition in Iberian pigs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pena, R. N. es_ES
dc.contributor.author Noguera, J. L. es_ES
dc.contributor.author Garcia-Santana, M. J. es_ES
dc.contributor.author Gonzalez, E. es_ES
dc.contributor.author Tejeda, J. F. es_ES
dc.contributor.author Ros-Freixedes, R. es_ES
dc.contributor.author Ibáñez-Escriche, N. es_ES
dc.date.accessioned 2019-07-04T20:00:30Z
dc.date.available 2019-07-04T20:00:30Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123193
dc.description.abstract [EN] The adipogenic nature of the Iberian pig defines many quality attributes of its fresh meat and dry-cured products. The distinct varieties of Iberian pig exhibit great variability in the genetic parameters for fat deposition and composition in muscle. The aim of this work is to identify common and distinct genomic regions related to fatty acid composition in Retinto, Torbiscal, and Entrepelado Iberian varieties and their reciprocal crosses through a diallelic experiment. In this study, we performed GWAS using a high density SNP array on 382 pigs with the multimarker regression Bayes B method implemented in GenSel. A number of genomic regions showed strong associations with the percentage of saturated and unsaturated fatty acid in intramuscular fat. In particular, five regions with Bayes Factor >100 (SSC2 and SSC7) or >50 (SSC2 and SSC12) explained an important fraction of the genetic variance for miristic, palmitoleic, monounsaturated (>14%), oleic (>10%) and polyunsaturated (>5%) fatty acids. Six genes (RXRB, PSMB8, CHGA, ACACA, PLIN4, PLIN5) located in these regions have been investigated in relation to intramuscular composition variability in Iberian pigs, with two SNPs at the RXRB gene giving the most consistent results on oleic and monounsaturated fatty acid content. es_ES
dc.description.sponsorship The authors would like to acknowledge the help of Inga Food S.A. and their support staff in setting up the experiment (E. Magallon, M. Ramos, L. Munoz, and P. Diaz) and Dr L. Varona from University of Zaragoza for discussion. This study was funded by the INIA grant RTA 2012-0054-C02-01 and the Centre for the Development of Industrial Technology agreement IDI-20140447. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Five genomic regions have a major impact on fat composition in Iberian pigs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-38622-7 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00054-C02-01/ES/Utilización de información genómica masiva para mejorar la calidad de los productos de cerdo ibérico en una población de referencia mixta y el estudio de su interacción con la alimentación./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Pena, RN.; Noguera, JL.; Garcia-Santana, MJ.; Gonzalez, E.; Tejeda, JF.; Ros-Freixedes, R.; Ibáñez-Escriche, N. (2019). Five genomic regions have a major impact on fat composition in Iberian pigs. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-38622-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-38622-7 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 30765794 en_EN
dc.identifier.pmcid PMC6375979 en_EN
dc.relation.pasarela S\379983 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Garcia Casco, J. M., Munoz Munoz, M., SilioLopez, L. & Rodriguez Valdovinos, C. Genotype by environment interaction for carcass traits and intramuscular fat content in heavy Iberian pigs fattened in two different free-range systems. Span J Agric Res 12, 388–395, https://doi.org/10.5424/sjar/2014122-4840 (2014). es_ES
dc.description.references Lopez-Bote, C. J. Sustained utilization of the Iberian pig breed. Meat Sci 49, S17–S27 (1998). es_ES
dc.description.references Benito, J., Albarran, A. & Garcia Casco, J. M. In Sustainable grassland productivity: Proceedings of the 21st General Meeting of the European Grassland Federation, Badajoz, Spain, 3–6April, 2006 (eds Lloveras, J. et al.) 635-645 (Sociedad Espanola para el Estudio de los Pastos(SEEP), 2006). es_ES
dc.description.references Benito, M. J., Rodriguez, M. M., Cordoba, M. G., Aranda, E. & Cordoba, J. J. Rapid differentiation of Staphylococcus aureus from staphylococcal species by arbitrarily primed-polymerase chain reaction. Let Appl Microbiol 31, 368–373, https://doi.org/10.1046/j.1472-765x.2000.00833.x (2000). es_ES
dc.description.references Groenen, M. A. A decade of pig genome sequencing: a window on pig domestication and evolution. Genet Sel Evol 48, 23, https://doi.org/10.1186/s12711-016-0204-2 (2016). es_ES
dc.description.references Ibanez-Escriche, N., Magallon, E., Gonzalez, E., Tejeda, J. F. & Noguera, J. L. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J Anim Sci 94, 28–37, https://doi.org/10.2527/jas.2015-9433 (2016). es_ES
dc.description.references Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38, 904–909, https://doi.org/10.1038/ng1847 (2006). es_ES
dc.description.references Dai, K., Khatun, I. & Hussain, M. M. NR2F1 and IRE1beta suppress microsomal triglyceride transfer protein expression and lipoprotein assembly in undifferentiated intestinal epithelial cells. Arterioscler Thromb Vasc Biol 30, 568–574, https://doi.org/10.1161/ATVBAHA.109.198135 (2010). es_ES
dc.description.references Wang, B. et al. Nutrigenomic regulation of adipose tissue development - role of retinoic acid: A review. Meat Sci 120, 100–106, https://doi.org/10.1016/j.meatsci.2016.04.003 (2016). es_ES
dc.description.references Arimochi, H., Sasaki, Y., Kitamura, A. & Yasutomo, K. Differentiation of preadipocytes and mature adipocytes requires PSMB8. Sci Rep 6, 26791, https://doi.org/10.1038/srep26791 (2016). es_ES
dc.description.references Kitamura, A. et al. A mutation in the immunoproteasome subunit PSMB8 causes autoinflammation and lipodystrophy in humans. J Clin Invest 121, 4150–4160, https://doi.org/10.1172/JCI58414 (2011). es_ES
dc.description.references Bandyopadhyay, G. K. et al. Catestatin (chromogranin A(352–372)) and novel effects on mobilization of fat from adipose tissue through regulation of adrenergic and leptin signaling. J Biol Chem 287, 23141–23151, https://doi.org/10.1074/jbc.M111.335877 (2012). es_ES
dc.description.references Gallardo, D. et al. Polymorphism of the pig acetyl-coenzyme A carboxylase alpha gene is associated with fatty acid composition in a Duroc commercial line. Anim Genet 40, 410–417, https://doi.org/10.1111/j.1365-2052.2009.01854.x (2009). es_ES
dc.description.references Muñoz, G. et al. QTL detection on porcine chromosome 12 for fatty-acid composition and association analyses of the fatty acid synthase, gastric inhibitory polypeptide and acetyl-coenzyme A carboxylase alpha genes. Anim Genet 38, 639–646, https://doi.org/10.1111/j.1365-2052.2007.01668.x (2007). es_ES
dc.description.references Munoz, M. et al. Disentangling Two QTL on Porcine Chromosome 12 for Backfat Fatty Acid Composition. Anim Biotechnol 24, 168–186, https://doi.org/10.1080/10495398.2012.763130 (2013). es_ES
dc.description.references Webb, E. C. & O’Neill, H. A. The animal fat paradox and meat quality. Meat Sci 80, 28–36, https://doi.org/10.1016/j.meatsci.2008.05.029 (2008). es_ES
dc.description.references Hamza, M. S. et al. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One 4, e4907, https://doi.org/10.1371/journal.pone.0004907 (2009). es_ES
dc.description.references Singh Ahuja, H. et al. Differential effects of rexinoids and thiazolidinediones on metabolic gene expression in diabetic rodents. Mol Pharmacol 59, 765–773 (2001). es_ES
dc.description.references Estany, J., Ros-Freixedes, R., Tor, M. & Pena, R. N. A functional variant in the stearoyl-CoA desaturase gene promoter enhances fatty acid desaturation in pork. PLoS ONE 9, e86177, https://doi.org/10.1371/journal.pone.0086177 (2014). es_ES
dc.description.references Ros-Freixedes, R., Reixach, J., Bosch, L., Tor, M. & Estany, J. Genetic correlations of intramuscular fat content and fatty acid composition among muscles and with subcutaneous fat in Duroc pigs. J Anim Sci 92, 5417–5425, https://doi.org/10.2527/jas.2014-8202 (2014). es_ES
dc.description.references Zappaterra, M. et al. Investigation of the Perilipin 5 gene expression and association study of its sequence polymorphism with meat and carcass quality traits in different pig breeds. Animal 12, 1135–1143, https://doi.org/10.1017/S1751731117002804 (2018). es_ES
dc.description.references O’Fallon, J. V., Busboom, J. R., Nelson, M. L. & Gaskins, C. T. A direct method for fatty acid methyl ester synthesis: application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85, 1511–1521, https://doi.org/10.2527/jas.2006-491 (2007). es_ES
dc.description.references Ros-Freixedes, R. et al. Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS One 11, e0152496, https://doi.org/10.1371/journal.pone.0152496 (2016). es_ES
dc.description.references Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159, https://doi.org/10.1006/abio.1987.9999 (1987). es_ES
dc.description.references Meuwissen, T. H., Hayes, B. J. & Goddard, M. E. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157, 1819–1829 (2001). es_ES
dc.description.references Fernando, R. L. & Garrick, D. J. GenSel: User Manual for a Portfolio ofGenomic Selection Related Analyses. (ed. Iowa State University Animal Breeding and Genetics, Ames.) (2009). es_ES
dc.description.references Habier, D., Fernando, R. L. & Dekkers, J. C. M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 177, 2389–2397 (2007). es_ES
dc.description.references Tossi, R., Fernando, R. L. & Dekkers, J. C. M. Genome-wide mapping of quantitative trait loci in admixed populations using mixed linear model and Bayesian multiple regression analysis. Genetics Selection Evolution 50, 32 (2018). es_ES
dc.description.references Legarra, A. et al. A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species. Genet Sel Evol 47, 6, https://doi.org/10.1186/s12711-015-0087-7 (2015). es_ES
dc.description.references Kass, R. E. & Raftery, A. E. Bayes Factors. Journal of the American Statistical Association 90, 773–795 (1995). es_ES
dc.description.references Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res 44, W90–97, https://doi.org/10.1093/nar/gkw377 (2016). es_ES
dc.description.references Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57, https://doi.org/10.1038/nprot.2008.211 (2009). es_ES
dc.description.references Untergasser, A. et al. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35, W71–74, https://doi.org/10.1093/nar/gkm306 (2007). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem