- -

Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Tarrazó-Serrano, Daniel es_ES
dc.contributor.author Pérez-López, Sergio es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.contributor.author Rubio Michavila, Constanza es_ES
dc.date.accessioned 2019-07-05T20:01:39Z
dc.date.available 2019-07-05T20:01:39Z
dc.date.issued 2019 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/123229
dc.description.abstract [EN] The development of flat acoustic lenses for different applications such as biomedical engineering is a topic of great interest. Flat lenses like Fresnel Zone Plates (FZPs) are capable of focusing energy beams without the need of concave or convex geometries, which are more difficult to manufacture. One of the possible applications of these type of lenses is tumor ablation through High Intensity Focused Ultrasound (HIFU) therapies with real time Magnetic Resonance Imaging (MRI) monitoring. In order to be MRI compatible, the FZP material cannot have electromagnetic interaction. In this work, a Phase-Reversal FZP (PR-FZP) made of Polylactic Acid (PLA) manufactured with a commercial 3D printer is proposed as a better, more efficient and MRI compatible alternative to conventional Soret FZPs. Phase-Reversal lenses, unlike traditional FZPs, take advantage of all the incident energy by adding phase compensation regions instead of pressure blocking regions. The manufactured PR-FZP achieves 21.9 dB of focal gain, which increases the gain compared to a Soret FZP of its same size by a factor of 4.0 dB. Both numerical and experimental results are presented, demonstrating the improved focusing capabilities of these types of lenses. es_ES
dc.description.sponsorship This work has been supported by Spanish MINECO (TEC2015-70939-R). S.P.-L. acknowledges financial support from Universitat Politècnica de València through grant program PAID-01-18. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Ultrasound es_ES
dc.subject Sound focusing es_ES
dc.subject Focusing enhancement es_ES
dc.subject Fresnel Zone Plates Lenses es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-43495-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-70939-R/ES/ESTRUCTURAS SUBWAVELENGTH PARA LA FOCALIZACION DE ULTRASONIDOS DE ALTA INTENSIDAD/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Tarrazó-Serrano, D.; Pérez-López, S.; Candelas Valiente, P.; Uris Martínez, A.; Rubio Michavila, C. (2019). Acoustic Focusing Enhancement In Fresnel Zone Plate Lenses. Scientific Reports. 9:1-10. https://doi.org/10.1038/s41598-019-43495-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-43495-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.relation.pasarela S\387021 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Sharma, S. K., Chen, D. & Mudhoo, A. Handbook on applications of ultrasound: sonochemistry for sustainability (CRC press, 2011). es_ES
dc.description.references Minin, I. V. & Minin, O. V. Ultrasound Imaging - Medical Applications (InTechOpen, 2011). es_ES
dc.description.references Cervera, F. et al. Refractive acoustic devices for airborne sound. Phys. Rev. Lett. 88, 023902 (2001). es_ES
dc.description.references Peng, P., Xiao, B. & Wu, Y. Flat acoustic lens by acoustic grating with curled slits. Phys. Lett. A 378, 3389–3392 (2014). es_ES
dc.description.references Wang, W., Xie, Y., Konneker, A., Popa, B.-I. & Cummer, S. A. Design and demonstration of broadband thin planar diffractive acoustic lenses. Appl. Phys. Lett. 105, 101904 (2014). es_ES
dc.description.references Yang, X., Yin, J., Yu, G., Peng, L. & Wang, N. Acoustic superlens using Helmholtz-resonator-based metamaterials. Appl. Phys. Lett. 107, 193505 (2015). es_ES
dc.description.references Lin, Z. et al. Acoustic focusing of sub-wavelength scale achieved by multiple Fabry-Perot resonance effect. J. Appl. Phys. 115, 104504 (2014). es_ES
dc.description.references Xia, X. et al. Planar ultrasonic lenses formed by concentric circular sandwiched-ring arrays. Adv. Mater. Technol. 1800542 (2018). es_ES
dc.description.references Soret, J. Ueber die durch kreisgitter erzeugten diffractionsphänomene. Ann. Phys. 232, 99–113 (1875). es_ES
dc.description.references Park, J. J. et al. Table-top soft x-ray microscope adopting a pmma phase-reversal zone plate. In Conference on Lasers and Electro-Optics, JFA6 (Optical Society of America, 2009). es_ES
dc.description.references Schindel, D., Bashford, A. & Hutchins, D. Focussing of ultrasonic waves in air using a micromachined Fresnel zone-plate. Ultrasonics 35, 275–285 (1997). es_ES
dc.description.references Welter, J. T. et al. Focusing of longitudinal ultrasonic waves in air with an aperiodic flat lens. J. Acoust. Soc. Am. 130, 2789–2796 (2011). es_ES
dc.description.references Welter, J. T. et al. Broadband aperiodic air coupled ultrasonic lens. Appl. Phys. Lett. 100, 214102 (2012). es_ES
dc.description.references Molerón, M., Serra-Garcia, M. & Daraio, C. Acoustic Fresnel lenses with extraordinary transmission. Appl. Phys. Lett. 105, 114109 (2014). es_ES
dc.description.references Li, Y. et al. Three-dimensional ultrathin planar lenses by acoustic metamaterials. Sci. Rep. 4, 6830 (2014). es_ES
dc.description.references Calvo, D. C., Thangawng, A. L., Nicholas, M. & Layman, C. N. Thin Fresnel zone plate lenses for focusing underwater sound. Appl. Phys. Lett. 107, 014103 (2015). es_ES
dc.description.references Castiñeira-Ibáñez, S., Tarrazó-Serrano, D., Minin, O. V., Rubio, C. & Minin, I. V. Tunable depth of focus of acoustical pupil masked Soret zone plate. Sens. Actuators A: Phys. 286, 183–187 (2019). es_ES
dc.description.references Tarrazó-Serrano, D., Rubio, C., Minin, O. V., Candelas, P. & Minin, I. V. Manipulation of focal patterns in acoustic Soret type zone plate lens by using reference radius/phase effect. Ultrasonics 91, 237–241 (2019). es_ES
dc.description.references Marsac, L. et al. MR-guided adaptive focusing of therapeutic ultrasound beams in the human head. Med. Phys. 39, 1141–1149 (2012). es_ES
dc.description.references Herrmann, K.-H., Gärtner, C., Güllmar, D., Krämer, M. & Reichenbach, J. R. 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer. Med. Eng. Phys. 36, 1373–1380 (2014). es_ES
dc.description.references Drumright, R. E., Gruber, P. R. & Henton, D. E. Polylactic acid technology. Adv. Mater. 12, 1841–1846 (2000). es_ES
dc.description.references Ebbini, E. S. & Cain, C. A. A spherical-section ultrasound phased array applicator for deep localized hyperthermia. IEEE Trans. Biomed. Eng. 38, 634–643 (1991). es_ES
dc.description.references Uchida, T. et al. Treatment of localized prostate cancer using High-Intensity Focused Ultrasound. BJU International 97, 56–61 (2006). es_ES
dc.description.references Fuster, J., Candelas, P., Castiñeira-Ibáñez, S., Pérez-López, S. & Rubio, C. Analysis of Fresnel zone plates focusing dependence on operating frequency. Sensors 17, 2809 (2017). es_ES
dc.description.references Rayleigh, L. Wave Theory, vol. 24 (Encyclopedia Britannica, 1888). es_ES
dc.description.references Black, D. N. & Wiltse, J. C. Millimeter-wave characteristics of phase-correcting Fresnel zone plates. IEEE Trans. Microw. Theory Tech. 35, 1122–1129 (1987). es_ES
dc.description.references Huder, B. & Menzel, W. Flat printed reflector antenna for mm-wave applications. Electron. Lett. 24, 318–319 (1988). es_ES
dc.description.references Machado, F., Zagrajek, P., Monsoriu, J. A. & Furlan, W. D. Terahertz sieves. IEEE Trans. Terahertz Sci. Technol. 8, 140–143 (2018). es_ES
dc.description.references Kundu, T., Placko, D., Rahani, E. K., Yanagita, T. & Dao, C. M. Ultrasonic field modeling: A comparison of analytical, semi-analytical, and numerical techniques. IEEE Trans. Ultrason., Ferroelec., Freq. Control 57 (2010). es_ES
dc.description.references Pérez-López, S., Fuster, J. M., Candelas, P., Rubio, C. & Belmar, F. On the use of phase correction rings on Fresnel zone plates with ultrasound piston emitters. Appl. Phys. Lett. 112, 264102 (2018). es_ES
dc.description.references Takeuchi, A., Uesugi, K. & Suzuki, Y. Improvement of quantitative performance of imaging x-ray microscope by reduction of edge-enhancement effect. J. Phys.: Conference Series, vol. 849, 012055 (IOP Publishing, 2017). es_ES
dc.description.references COMSOL-Multiphysics. Comsol-multiphysics user guide (version 4.3a). COMSOL User Guid. (version 4.3a) 39–40 (2012). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem