- -

Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Willemsen, A. es_ES
dc.contributor.author Carrasco Jiménez, José Luis es_ES
dc.contributor.author Elena Fito, Santiago Fco. es_ES
dc.contributor.author Zwart, Mark Peter es_ES
dc.date.accessioned 2019-09-05T20:05:03Z
dc.date.available 2019-09-05T20:05:03Z
dc.date.issued 2018 es_ES
dc.identifier.issn 0018-067X es_ES
dc.identifier.uri http://hdl.handle.net/10251/125115
dc.description.abstract [EN] Horizontal gene transfer is common among viruses, while they also have highly compact genomes and tend to lose artificial genomic insertions rapidly. Understanding the stability of genomic insertions in viral genomes is therefore relevant for explaining and predicting their evolutionary patterns. Here, we revisit a large body of experimental research on a plant RNA virus, tobacco etch potyvirus (TEV), to identify the patterns underlying the stability of a range of homologous and heterologous insertions in the viral genome. We obtained a wide range of estimates for the recombination rate-the rate at which deletions removing the insertion occur-and these appeared to be independent of the type of insertion and its location. Of the factors we considered, recombination rate was the best predictor of insertion stability, although we could not identify the specific sequence characteristics that would help predict insertion instability. We also considered experimentally the possibility that functional insertions lead to higher mutational robustness through increased redundancy. However, our observations suggest that both functional and non-functional increases in genome size decreased the mutational robustness. Our results therefore demonstrate the importance of recombination rates for predicting the long-term stability and evolution of viral RNA genomes and suggest that there are unexpected drawbacks to increases in genome size for mutational robustness. es_ES
dc.description.sponsorship This work was supported by the John Templeton Foundation (grant 22371), the European Commission seventh Framework Program EvoEvo Project (grant ICT-610427), and Spain Agencia Estatal de Investigacion-FEDER (grant BFU2015-65037-P) to S.F.E. The opinions expressed in this publication are those of the authors and do not necessarily reflect the views of the John Templeton Foundation. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Heredity es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41437-018-0086-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2015-65037-P/ES/EVOLUCION DE VIRUS EN HUESPEDES CON SUSCEPTIBILIDAD VARIABLE: CONSECUENCIAS EN EFICACIA Y VIRULENCIA DE CAMBIOS EN LAS REDES INTERACTOMICAS DE PROTEINAS VIRUS-HUESPED/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/610427/EU/Evolution of Evolution/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/JTF//JTF22371/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Willemsen, A.; Carrasco Jiménez, JL.; Elena Fito, SF.; Zwart, MP. (2018). Going, going, gone: predicting the fate of genomic insertions in plant RNA viruses. Heredity. 121(5):499-509. https://doi.org/10.1038/s41437-018-0086-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/s41437-018-0086-x es_ES
dc.description.upvformatpinicio 499 es_ES
dc.description.upvformatpfin 509 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 121 es_ES
dc.description.issue 5 es_ES
dc.identifier.pmid 29743566
dc.identifier.pmcid PMC6180052
dc.relation.pasarela S\382645 es_ES
dc.contributor.funder John Templeton Foundation es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Commission
dc.contributor.funder European Regional Development Fund
dc.description.references Belshaw R, Gardner A, Rambaut A, Pybus OG (2008) Pacing a small cage: mutation and RNA viruses. Trends Ecol Evol 23:188–193 es_ES
dc.description.references Belshaw R, Pybus OG, Rambaut A (2007) The evolution of genome compression and genomic novelty in RNA viruses. Genome Res 17:1496–1504 es_ES
dc.description.references Bobay LM, Ochman H (2017) The evolution of bacterial genome architecture. Front Genet 8:72 es_ES
dc.description.references Carter JJ, Daugherty MD, Qi X, Bheda-Malge A, Wipf GC, Robinson K et al. (2013) Identification of an overprinting gene in Merkel cell polyomavirus provides evolutionary insight into the birth of viral genes. Proc Natl Acad Sci USA 110:12744–12749 es_ES
dc.description.references Cervera H, Lalić J, Elena SF (2016) Efficient escape from local optima in a highly rugged fitness landscape by evolving RNA virus populations. Proc R Soc B 283:20160984 es_ES
dc.description.references Chung BN, Canto T, Palukaitis P (2007) Stability of recombinant plant viruses containing genes of unrelated plant viruses. J Gen Virol 88:1347–1355 es_ES
dc.description.references Crow KD, Wagner GP (2006) What is the role of genome duplication in the evolution of complexity and diversity? Mol Biol Evol 23:887–892 es_ES
dc.description.references De Visser JAGM, Hermisson J, Wagner GP, Ancel Meyers L, Bagheri-Chaichian H, Blanchard JL, Chao L, Cheverud JM, Elena SF, Fontana W, Gibson G, Hansen TF, Krakauer DC, Lewontin RC, Ofria C, Rice SH, von Dassow G, Wagner A, Whitlock MC (2003) Evolution and detection of genetic robustness. Evolution 57:1959–1972 es_ES
dc.description.references De Visser JAGM, Krug J (2014) Empirical fitness landscapes and the predictability of evolution. Nat Rev Genet 15:480–490 es_ES
dc.description.references Dolja VV, Herndon KL, Pirone TP, Carrington JC, Gus P (1993) Spontaneous mutagenesis of a plant potyvirus genome after insertion of a foreign gene J Virol 67:5968–5975 es_ES
dc.description.references Filée J (2009) Lateral gene transfer, lineage-specific gene expansion and the evolution of nucleo cytoplasmic large DNA viruses. J Invertebr Pathol 101:169–171 es_ES
dc.description.references Frensing T (2015) Defective interfering viruses and their impact on vaccines and viral vectors. Biotechnol J 10:681–689 es_ES
dc.description.references Kim MJ, Kao C (2001) Factors regulating template switch in vitro by viral RNA-dependent RNA polymerases: implications for RNA-RNA recombination. Proc Natl Acad Sci USA 98:4792–4977 es_ES
dc.description.references Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618 es_ES
dc.description.references Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742 es_ES
dc.description.references Krupovic M, Koonin EV (2014) Evolution of eukaryotic single-stranded DNA viruses of the Bidnaviridae family from genes of four other groups of widely different viruses. Sci Rep 4:5347 es_ES
dc.description.references Lässig M, Mustonen V, Walczak AM (2017) Predicting evolution. Nat Ecol Evol 1:77 es_ES
dc.description.references Lauring AS, Acevedo A, Cooper SB, Andino R (2012) Codon usage determines the mutational robustness, evolutionary capacity, and virulence of an RNA virus. Cell Host Microbe 12:623–632 es_ES
dc.description.references Luksza M, Lässig M (2014) A predictive fitness model for influenza. Nature 507:57–61 es_ES
dc.description.references Lynch M (2006) Streamlining and simplification of microbial genome architecture. Annu Rev Microbiol 60:327–349 es_ES
dc.description.references Majer E, Daròs JA, Zwart MP (2013) Stability and fitness impact of the visually discernible Rosea1 marker in the Tobacco etch virus genome. Viruses 5:2153–2168 es_ES
dc.description.references Monroe SS, Schlesinger S (1983) RNAs from two independently isolated defective interfering particles of Sindbis virus contain a cellular tRNA sequence at their 5’ ends. Proc Natl Acad Sci USA 80:3279–3283 es_ES
dc.description.references Montville R, Froissart R, Remold SK, Tenaillon O, Turner PE (2005) Evolution of mutational robustness in an RNA virus. PLOS Biol 3:1939–1945 es_ES
dc.description.references Moratorio G, Henningsson R, Barbezange C, Carrau L, Bordería AV, Blanc H, Beaucourt S, Poirier EZ, Vallet T, Boussier J, Mounce BC, Fontes M, Vignuzzi M (2017) Attenuation of RNA viruses by redirecting their evolution in sequence space. Nat Microbiol 2:17088 es_ES
dc.description.references Nagy PD, Simon AE (1997) New insights into the mechanisms of RNA recombination. Virology 235:1–9 es_ES
dc.description.references Naseeb S, Ames RM, Delneri D, Lovell SC (2017) Rapid functional and evolutionary changes follow gene duplication in yeast. Proc R Soc B 284:20171393 es_ES
dc.description.references Pál C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37:1372–1375 es_ES
dc.description.references Pijlman GP, van den Born E, Martens DE, Vlak JM (2001) Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283:132–138 es_ES
dc.description.references R Core Team (2016) R: A language and environment for statistical computing. es_ES
dc.description.references Schenk MF, De Visser JAGM (2013) Predicting the evolution of antibiotic resistance. BMC Biol 11:14 es_ES
dc.description.references Shapka N, Nagy PD (2004) The AU-rich RNA recombination hot spot sequence of Brome mosaic virus is functional in tombusviruses: implications for the mechanism of RNA recombination. J Virol 78:2288–2300 es_ES
dc.description.references Song D, Cho WK, Park SH, Jo Y, Kim KH (2013) Evolution of and horizontal gene transfer in the Endornavirus genus. PLOS One 8:e64270 es_ES
dc.description.references Stoltzfus A, McCandlish DM (2017) Mutational biases influence parallel adaptation. Mol Biol Evol 34:2163–2172 es_ES
dc.description.references Tatineni S, Robertson CJ, Garnsey SM, Dawson WO (2011) A plant virus evolved by acquiring multiple nonconserved genes to extend its host range. Proc Natl Acad Sci USA 108:17366–17371 es_ES
dc.description.references Tromas N, Elena SF (2010) The rate and spectrum of spontaneous mutations in a plant RNA virus. Genetics 185:983–989 es_ES
dc.description.references Tromas N, Zwart MP, Forment J, Elena SF (2014a) Shrinkage of genome size in a plant RNA virus upon transfer of an essential viral gene into the host genome. Genome Biol Evol 6:538–550 es_ES
dc.description.references Tromas N, Zwart MP, Poulain M, Elena SF (2014b) Estimation of the in vivo recombination rate for a plant RNA virus. J Gen Virol 95:724–732 es_ES
dc.description.references Van Nimwegen E (2006) Influenza escapes immunity along neutral networks. Science 314:1884–1886 es_ES
dc.description.references Willemsen A, Zwart MP, Ambrós S, Carrasco JL, Elena SF (2017) 2b or not 2b: experimental evolution of functional exogenous sequences in a plant RNA virus. Genome Biol Evol 9:297–310 es_ES
dc.description.references Willemsen A, Zwart MP, Higueras P, Sardanyés J, Elena SF (2016a) Predicting the stability of homologous gene duplications in a plant RNA. virus 8:3065–3082 es_ES
dc.description.references Willemsen A, Zwart MP, Tromas N, Majer E, Daròs JA, Elena SF (2016b) Multiple barriers to the evolution of alternative gene orders in a positive-strand RNA virus. Genetics 202:1503–1521 es_ES
dc.description.references Yue J, Hu X, Sun H, Yang Y, Huang J (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152–1159 es_ES
dc.description.references Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18:292–298 es_ES
dc.description.references Zwart MP, Willemsen A, Daròs JA, Elena SF (2014) Experimental evolution of pseudogenization and gene loss in a plant RNA virus. Mol Biol Evol 31:121–134 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem