- -

Modelado y control de turbinas eólicas marinas flotantes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelado y control de turbinas eólicas marinas flotantes

Mostrar el registro completo del ítem

Tomás-Rodríguez, M.; Santos, M. (2019). Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática. 16(4):381-390. https://doi.org/10.4995/riai.2019.11648

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/126281

Ficheros en el ítem

Metadatos del ítem

Título: Modelado y control de turbinas eólicas marinas flotantes
Otro titulo: Modelling and control of floating offshore wind turbines
Autor: Tomás-Rodríguez, M. Santos, M.
Fecha difusión:
Resumen:
[EN] This tutorial deals with the modeling and control of floating marine wind turbines. First, these offshore wind energy systems, located on the high seas, in deep waters are described; some modeling approaches are ...[+]


[ES] En este tutorial se aborda el tema del modelado y control de las turbinas eólicas marinas flotantes. En primer lugar se describen estos sistemas de extracción de energía eólica que están situados en alta mar, en aguas ...[+]
Palabras clave: Modelado , Control , Aerogenerador , Turbinas eólicas flotantes , Energía marina , Energía renovable , Modelling , Wind turbine , Floating Offshore wind turbines , Wind marine energy , Renewable energy
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática.. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.4995/riai.2019.11648
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/riai.2019.11648
Tipo: Artículo

References

Bianchi, F. D., De Battista, H., & Mantz, R. J. (2006). Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media.

Carter, D.J.T. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. https://doi.org/10.1016/0029-8018(82)90042-7

García, E., Correcher, A., Quiles, E., Morant, F. 2016. Renewable energy resources of the marine environment and its control requirements. RIAI Revista Iberoamericana de Automática e Informática Industrial, 13(2):141-161. https://doi.org/10.1016/j.riai.2016.03.002 [+]
Bianchi, F. D., De Battista, H., & Mantz, R. J. (2006). Wind turbine control systems: principles, modelling and gain scheduling design. Springer Science & Business Media.

Carter, D.J.T. (1982). Prediction of wave height and period for a constant wind velocity using the JONSWAP results. Ocean Engineering, 9(1), 17-33. https://doi.org/10.1016/0029-8018(82)90042-7

García, E., Correcher, A., Quiles, E., Morant, F. 2016. Renewable energy resources of the marine environment and its control requirements. RIAI Revista Iberoamericana de Automática e Informática Industrial, 13(2):141-161. https://doi.org/10.1016/j.riai.2016.03.002

González-Rodríguez, A.G., González-Rodríguez, A., Chacón, J.M., Castillo, F.J. 2017. Wide frequency vibration absorber based on a new adjustable-stiffness leaf spring. Revista Iberoamericana de Automática e Informática Industrial, 14(2), 163-173, doi: https://doi.org/10.1016/j.riai.2016.11.005

Hu, Y., Wang, J., Chen, M.Z., Li, Z. and Sun, Y., 2018. Load mitigation for a barge-type floating offshore wind turbine via inerter-based passive structural control. Engineering Structures, 177, pp.198-209. https://doi.org/10.1016/j.engstruct.2018.09.063

Hywind Offshore Wind. Statoil (2019). http://www.offshorewind.biz/2014/07/09/statoil-signs-hywind-deal-with-aibel/

Jin, X., Xie, S., He, J., Lin, Y., Wang, Y. and Wang, N., 2018. Optimization of tuned mass damper parameters for floating wind turbines by using the artificial fish swarm algorithm. Ocean Engineering, 167, pp.130-141. https://doi.org/10.1016/j.oceaneng.2018.08.031

Jonkman, J. M. 2007. Dynamics modeling and loads analysis of an offshore floating wind turbine. No. NREL/TP-500-41958, National Renewable Energy Lab (NREL), Golden, University of Colorado. https://doi.org/10.2172/921803

Jonkman, J. M. 2008. Influence of control on the pitch damping of a floating wind turbine. ASME Wind Energy Symposium, Reno, Nevada, Jan 7-10. https://doi.org/10.2514/6.2008-1306

Jonkman, J., Matha, D. 2009. A quantitative comparison of the responses of three floating platform concepts. In: European Offshore Wind Conference And Exhibition. Stockholm (Sweden). (No. NREL/CP-500-46726).

Jose, A., Falzarano, J., Wang, H. (2018). A study of negative damping in floating wind turbines using coupled program FAST-SIMDYN. In ASME 2018 1st Int. Offshore Wind Technical Conf. (pp. V001T01A036-V001T01A036). American Society of Mechanical Engineers. https://doi.org/10.1115/IOWTC2018-1112

Knudsen, T., Bak, T., Svenstrup, M. (2015). Survey of wind farm control-power and fatigue optimization. Wind Energy, 18(8), 1333-1351. https://doi.org/10.1002/we.1760

Lackner, M.A., Rotea, M.A. 2011. Structural control of floating wind turbines. Mechatronics, 21(4), pp.704-719. https://doi.org/10.1016/j.mechatronics.2010.11.007

Larsen, T.J., Hanson, T.D. 2007. A method to avoid negative damped low frequent tower vibrations for a floating, pitch controlled wind turbine. In Journal of Physics: Conference Series (Vol. 75, No. 1, p. 012073). IOP Publishing. https://doi.org/10.1088/1742-6596/75/1/012073

Menezes, E.J.N., Araújo, A.M. and da Silva, N.S.B. 2018. A review on wind turbine control and its associated methods. Journal of Cleaner Production, 174, pp.945-953. https://doi.org/10.1016/j.jclepro.2017.10.297

Mikati, M., Santos, M., Armenta, C. (2013). Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renewable energy, 57, 587-593. https://doi.org/10.1016/j.renene.2013.02.018

Pérez de la Portilla, M., López Piñeiro, A., Somolinos J.A., Morales, R. (2018) Dynamic modelling and control of a submerged device with hydrostatic actuators. Revista Iberoamericana de Automática e Informática Industrial, 15(1), pp. 12-23, 2018, https://doi.org/10.4995/riai.2017.8824

Roddier, D., Cermelli, C., Aubault, A., & Peiffer, A. (2017). Summary and conclusions of the full life-cycle of the WindFloat FOWT prototype project. In ASME 2017 36th Int. Conf. on Ocean, Offshore and Arctic Engineering (pp. V009T12A048-V009T12A048). American Society of Mechanical Engineers. https://doi.org/10.1115/OMAE2017-62561

Smith, M.C. 2002. Synthesis of mechanical networks: the inerter. IEEE Transactions on Automatic Control, 47(10), 1648-1662. https://doi.org/10.1109/TAC.2002.803532

Soong, T.T., Costantinou, M.C. (2014). Passive and active structural vibration control in civil engineering (Vol. 345). Springer.

Stewart, G. M., Lackner, M. A. 2014. The impact of passive tuned mass dampers and wind-wave misalignment on offshore wind turbine loads. Engineering Structures 73, 54-61. https://doi.org/10.1016/j.engstruct.2014.04.045

Tomas-Rodríguez, M., Elsaghir, T., Hashi S., Santos, M. 2018. Análisis de vibraciones en turbinas marinas, XXXIX Jornadas de Automática, Badajoz, 5-7, Sept.

Wang, C.M., Utsunomiya, T., Wee, S.C., Choo, Y.S. 2010. Research on floating wind turbines: a literature survey. The IES Journal Part A: Civil & Structural Engineering, 3(4), pp.267-277. https://doi.org/10.1080/19373260.2010.517395

Wang, X., Zeng, X., Li, J., Yang, X., & Wang, H. (2018). A review on recent advancements of substructures for offshore wind turbines. Energy Conversion and Management, 158, 103-119. https://doi.org/10.1016/j.enconman.2017.12.061

Yang, J., He, E.M. and Hu, Y.Q., 2019. Dynamic modeling and vibration suppression for an offshore wind turbine with a tuned mass damper in floating platform. Applied Ocean Research, 83, pp.21-29. https://doi.org/10.1016/j.apor.2018.08.021

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem