- -

Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ferri, J. M. es_ES
dc.contributor.author Motoc, D. Luca es_ES
dc.contributor.author Ferrándiz Bou, Santiago es_ES
dc.contributor.author Balart, Rafael es_ES
dc.date.accessioned 2020-02-16T21:01:50Z
dc.date.available 2020-02-16T21:01:50Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/137019
dc.description.abstract [EN] The objective of this study was to investigate the thermal expansivities and degradation properties for several in vitro conditioned biodegradable poly(lactic acid)/hydroxyapatite (PLA/HA) and poly(lactic acid)/b-tricalcium phosphate (PLA/ bTCP) composites with different mass% of the particle reinforcements (i.e. 10, 20 and 30). The samples were prepared by extrusion followed by injection moulding and incubated in a customized simulated body fluid at 37 C over 60, 90, 120, 150 and 180 days, respectively. Thermal expansion and degradation properties of in vitro conditioned samples, along with dynamic mechanical properties of unconditioned ones, were systematically investigated through coefficients of linear thermal expansion and thermal strain changes, decomposition temperatures, mass changes and per cent residues. The results indicated that PLA/bTCP composites performed better than PLA/HA composites, irrespective of their filler mass%, revealing high values of glass transition temperatures, around a mean value of 65 C, both on dynamic mechanical analysis and on dilatation measurements but lower values on their degradation temperatures, such as 360 C. The results suggest the feasibility of tailoring high-loaded osteoconductive fillers-reinforced PLA composites for various medical and engineering applications. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Journal of Thermal Analysis and Calorimetry (Online) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Poly(lactic acid) es_ES
dc.subject Hydroxyapatite es_ES
dc.subject B-Tricalcium phosphate es_ES
dc.subject Expansion es_ES
dc.subject Degradation es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s10973-019-08799-0 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Ferri, JM.; Motoc, DL.; Ferrándiz Bou, S.; Balart, R. (2019). Thermal expansivity and degradation properties of PLA/HA and PLA/ bTCP in vitro conditioned composites. Journal of Thermal Analysis and Calorimetry (Online). 138(4):2691-2702. https://doi.org/10.1007/s10973-019-08799-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s10973-019-08799-0 es_ES
dc.description.upvformatpinicio 2691 es_ES
dc.description.upvformatpfin 2702 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 138 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1588-2926 es_ES
dc.relation.pasarela S\393286 es_ES
dc.description.references Auras R, Lim LT, Selke S, Tsuji H. Poly(lactic acid): structures, production, synthesis, and applications. New York: Wiley; 2010. es_ES
dc.description.references Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016;107:17–46. es_ES
dc.description.references Haaparanta A-M, Haimi S, Ellä V, Hopper N, Miettinen S, Suuronen R, et al. Porous polylactide/β-tricalcium phosphate composite scaffolds for tissue engineering applications. J Tissue Eng Regen Med. 2010;4(5):366–73. es_ES
dc.description.references Ahmed J, Varshney SK. Polylactides—chemistry, properties and green packaging technology: a review. Int J Food Prop. 2011;14(1):37–58. es_ES
dc.description.references Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9(2):63–84. es_ES
dc.description.references Slomkowski S, Penczek S, Duda A. Polylactides—an overview. Polym Adv Technol. 2014;25(5):436–47. es_ES
dc.description.references Avinc O, Khoddami A. Overview of poly(lactic acid) (PLA) fibre. Fibre Chem. 2009;41(6):391–401. es_ES
dc.description.references Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Impact modified PLA-hydroxyapatite composites—thermo-mechanical properties. Compos A Appl Sci Manuf. 2018;107:326–33. es_ES
dc.description.references Nazhat SN, Kellomäki M, Törmälä P, Tanner KE, Bonfield W. Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactides. J Biomed Mater Res. 2001;58(4):335–43. es_ES
dc.description.references Ignjatovic N, Uskokovic D. Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Appl Surf Sci. 2004;238(1):314–9. es_ES
dc.description.references Li J, Zheng W, Li L, Zheng Y, Lou X. Thermal degradation kinetics of g-HA/PLA composite. Thermochim Acta. 2009;493(1):90–5. es_ES
dc.description.references Zhang SM, Liu J, Zhou W, Cheng L, Guo XD. Interfacial fabrication and property of hydroxyapatite/polylactide resorbable bone fixation composites. Curr Appl Phys. 2005;5(5):516–8. es_ES
dc.description.references Akindoyo JO, Beg MDH, Ghazali S, Heim HP, Feldmann M. Effects of surface modification on dispersion, mechanical, thermal and dynamic mechanical properties of injection molded PLA-hydroxyapatite composites. Compos A Appl Sci Manuf. 2017;103:96–105. es_ES
dc.description.references Kang Y, Yao Y, Yin G, Huang Z, Liao X, Xu X, et al. A study on the in vitro degradation properties of poly(l-lactic acid)/β-tricalcuim phosphate(PLLA/β-TCP) scaffold under dynamic loading. Med Eng Phys. 2009;31(5):589–94. es_ES
dc.description.references Huang J, Ten E, Liu G, Finzen M, Yu W, Lee JS, et al. Biocomposites of pHEMA with HA/β-TCP (60/40) for bone tissue engineering: swelling, hydrolytic degradation, and in vitro behavior. Polymer. 2013;54(3):1197–207. es_ES
dc.description.references Bleach NC, Nazhat SN, Tanner KE, Kellomäki M, Törmälä P. Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate—polylactide composites. Biomaterials. 2002;23(7):1579–85. es_ES
dc.description.references Ferri J, Gisbert I, García-Sanoguera D, Reig M, Balart R. The effect of beta-tricalcium phosphate on mechanical and thermal performances of poly(lactic acid). J Compos Mater. 2016;50(30):4189–98. es_ES
dc.description.references Li X, Qi C, Han L, Chu C, Bai J, Guo C, et al. Influence of dynamic compressive loading on the in vitro degradation behavior of pure PLA and Mg/PLA composite. Acta Biomater. 2017;64:269–78. es_ES
dc.description.references Agrawal CM, McKinney JS, Lanctot D, Athanasiou KA. Effects of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials. 2000;21(23):2443–52. es_ES
dc.description.references Kikuchi M, Koyama Y, Takakuda K, Miyairi H, Shirahama N, Tanaka J. In vitro change in mechanical strength of β-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. J Biomed Mater Res. 2002;62(2):265–72. es_ES
dc.description.references Lim LT, Auras R, Rubino M. Processing technologies for poly(lactic acid). Prog Polym Sci. 2008;33(8):820–52. es_ES
dc.description.references Ignjatovic N, Suljovrujic E, Budinski-Simendic J, Krakovsky I, Uskokovic D. Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. J Biomed Mater Res B Appl Biomater. 2004;71B(2):284–94. es_ES
dc.description.references Martin C. Twin screw extrusion for pharmaceutical processes. In: Repka MA, Langley N, DiNunzio J, editors. Melt extrusion: materials, technology and drug product design. New York: Springer; 2013. p. 47–79. es_ES
dc.description.references Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47:237–47. es_ES
dc.description.references Corcione C, Scalera F, Gervaso F, Montagna F, Sannino A, Maffezzoli A. One-step solvent-free process for the fabrication of high loaded PLA/HA composite filament for 3D printing. J Therm Anal Calorim. 2018;134:1–8. es_ES
dc.description.references Siqueira L, Passador FR, Costa MM, Lobo AO, Sousa E. Influence of the addition of β-TCP on the morphology, thermal properties and cell viability of poly (lactic acid) fibers obtained by electrospinning. Mater Sci Eng C. 2015;52:135–43. es_ES
dc.description.references Drummer D, Cifuentes-Cuéllar S, Rietzel D. Suitability of PLA/TCP for fused deposition modeling. Rapid Prototyp J. 2012;18(6):500–7. es_ES
dc.description.references Ferri J, Jordá J, Montanes N, Fenollar O, Balart R. Manufacturing and characterization of poly(lactic acid) composites with hydroxyapatite. J Thermoplast Compos Mater. 2018;31(7):865–81. es_ES
dc.description.references Menczel JD, Prime RB. Thermal analysis of polymers: fundamentals and applications. New York: Wiley; 2014. es_ES
dc.description.references Aboudi J, Arnold SM, Bednarcyk BA. Chapter 3—fundamentals of the mechanics of multiphase materials. In: Aboudi J, Arnold SM, Bednarcyk BA, editors. Micromechanics of composite materials. Oxford: Butterworth-Heinemann; 2013. p. 87–145. es_ES
dc.description.references Esposito Corcione C, Gervaso F, Scalera F, Padmanabhan SK, Madaghiele M, Montagna F, et al. Highly loaded hydroxyapatite microsphere/PLA porous scaffolds obtained by fused deposition modelling. Ceram Int. 2018;45:2803–10. es_ES
dc.description.references Zou H, Yi C, Wang L, Liu H, Xu W. Thermal degradation of poly(lactic acid) measured by thermogravimetry coupled to Fourier transform infrared spectroscopy. J Therm Anal Calorim. 2009;97(3):929. es_ES
dc.description.references Schindler A, Doedt M, Gezgin Ş, Menzel J, Schmölzer S. Identification of polymers by means of DSC, TG, STA and computer-assisted database search. J Therm Anal Calorim. 2017;129(2):833–42. es_ES
dc.description.references Lee WA, Knight GJ. Ratio of the glass transition temperature to the melting point in polymers. Br Polym J. 1970;2(1):73–80. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem