- -

Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aginaga, J. es_ES
dc.contributor.author Iriarte Goñi, X. es_ES
dc.contributor.author Plaza, A. es_ES
dc.contributor.author Mata Amela, Vicente es_ES
dc.date.accessioned 2020-03-11T10:02:41Z
dc.date.available 2020-03-11T10:02:41Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 1050-0472 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138702
dc.description.abstract [EN] Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower mobility architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal DOF. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found singularities, one of them can be used in order to fold up the mechanism for its transportation. it is concluded that the proposed mechanism reaches the desired output movements in order to carry out rehabilitation maneuvers in a singularity-free portion of its workspace. es_ES
dc.description.sponsorship This work was funded by the Plan Nacional de I + D, Comision Interministerial de Ciencia y Tecnologia (FEDER-CICYT) under the projects DPI2013-44227-R and DPI2017-84201-R. es_ES
dc.language Inglés es_ES
dc.publisher ASME International es_ES
dc.relation.ispartof Journal of Mechanical Design es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1115/1.4040168 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-44227-R/ES/METODOLOGIA DE DISEÑO DE SISTEMAS BIOMECATRONICOS. APLICACION AL DESARROLLO DE UN ROBOT PARALELO HIBRIDO PARA DIAGNOSTICO Y REHABILITACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/INTEGRACION DE MODELOS BIOMECANICOS EN EL DESARROLLO Y OPERACION DE ROBOTS REHABILITADORES RECONFIGURABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Aginaga, J.; Iriarte Goñi, X.; Plaza, A.; Mata Amela, V. (2018). Kinematic Design of a New Four Degree-of-Freedom Parallel Robot for Knee Rehabilitation. Journal of Mechanical Design. 140(9). https://doi.org/10.1115/1.4040168 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1115/1.4040168 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 140 es_ES
dc.description.issue 9 es_ES
dc.relation.pasarela S\387440 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Chablat, D., & Wenger, P. (2003). Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation, 19(3), 403-410. doi:10.1109/tra.2003.810242 es_ES
dc.description.references Salgado, O., Altuzarra, O., Petuya, V., & Hernández, A. (2008). Synthesis and Design of a Novel 3T1R Fully-Parallel Manipulator. Journal of Mechanical Design, 130(4). doi:10.1115/1.2839005 es_ES
dc.description.references Briot, S., & Bonev, I. A. (2009). Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications. Journal of Mechanisms and Robotics, 1(2). doi:10.1115/1.3046125 es_ES
dc.description.references Company, O., Pierrot, F., Krut, S., Baradat, C., & Nabat, V. (2011). Par2: a spatial mechanism for fast planar two-degree-of-freedom pick-and-place applications. Meccanica, 46(1), 239-248. doi:10.1007/s11012-010-9413-x es_ES
dc.description.references Xie, F., & Liu, X.-J. (2015). Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029440 es_ES
dc.description.references Kuo, C.-H., & Dai, J. S. (2012). Kinematics of a Fully-Decoupled Remote Center-of-Motion Parallel Manipulator for Minimally Invasive Surgery. Journal of Medical Devices, 6(2). doi:10.1115/1.4006541 es_ES
dc.description.references Bi, Z. M. (2013). Design of a spherical parallel kinematic machine for ankle rehabilitation. Advanced Robotics, 27(2), 121-132. doi:10.1080/01691864.2012.703306 es_ES
dc.description.references Chaker, A., Mlika, A., Laribi, M. A., Romdhane, L., & Zeghloul, S. (2012). Synthesis of spherical parallel manipulator for dexterous medical task. Frontiers of Mechanical Engineering, 7(2), 150-162. doi:10.1007/s11465-012-0325-4 es_ES
dc.description.references Plitea, N., Szilaghyi, A., & Pisla, D. (2015). Kinematic analysis of a new 5-DOF modular parallel robot for brachytherapy. Robotics and Computer-Integrated Manufacturing, 31, 70-80. doi:10.1016/j.rcim.2014.07.005 es_ES
dc.description.references Jamwal, P. K., Hussain, S., & Xie, S. Q. (2013). Review on design and control aspects of ankle rehabilitation robots. Disability and Rehabilitation: Assistive Technology, 10(2), 93-101. doi:10.3109/17483107.2013.866986 es_ES
dc.description.references Rastegarpanah, A., Saadat, M., & Borboni, A. (2016). Parallel Robot for Lower Limb Rehabilitation Exercises. Applied Bionics and Biomechanics, 2016, 1-10. doi:10.1155/2016/8584735 es_ES
dc.description.references Wiertsema, S. H., van Hooff, H. J. A., Migchelsen, L. A. A., & Steultjens, M. P. M. (2008). Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. The Knee, 15(2), 107-110. doi:10.1016/j.knee.2008.01.003 es_ES
dc.description.references Lopomo, N., Zaffagnini, S., Signorelli, C., Bignozzi, S., Giordano, G., Marcheggiani Muccioli, G. M., & Visani, A. (2012). An original clinical methodology for non-invasive assessment of pivot-shift test. Computer Methods in Biomechanics and Biomedical Engineering, 15(12), 1323-1328. doi:10.1080/10255842.2011.591788 es_ES
dc.description.references Chen, W., and Zhao, M., 2001, “A Novel 4-DOF Parallel Manipulator and Its Kinematic Modelling,” IEEE International Conference on Robotics and Automation (ICRA), Seoul, South Korea, May 21–26, pp. 3350–3355.10.1109/ROBOT.2001.933135 es_ES
dc.description.references Ghaffari, H., Payeganeh, G., & Arbabtafti, M. (2014). Kinematic design of a novel 4-DOF parallel mechanism for turbine blade machining. The International Journal of Advanced Manufacturing Technology, 74(5-8), 729-739. doi:10.1007/s00170-014-6015-0 es_ES
dc.description.references Altuzarra, O., Macho, E., Aginaga, J., & Petuya, V. (2014). Design of a solar tracking parallel mechanism with low energy consumption. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 229(3), 566-579. doi:10.1177/0954406214537249 es_ES
dc.description.references Gan, D., Dai, J. S., Dias, J., Umer, R., & Seneviratne, L. (2015). Singularity-Free Workspace Aimed Optimal Design of a 2T2R Parallel Mechanism for Automated Fiber Placement. Journal of Mechanisms and Robotics, 7(4). doi:10.1115/1.4029957 es_ES
dc.description.references Kumar, N., Piccin, O., & Bayle, B. (2014). A task-based type synthesis of novel 2T2R parallel mechanisms. Mechanism and Machine Theory, 77, 59-72. doi:10.1016/j.mechmachtheory.2014.02.007 es_ES
dc.description.references Mohan, S., Mohanta, J. K., Kurtenbach, S., Paris, J., Corves, B., & Huesing, M. (2017). Design, development and control of a 2PRP-2PPR planar parallel manipulator for lower limb rehabilitation therapies. Mechanism and Machine Theory, 112, 272-294. doi:10.1016/j.mechmachtheory.2017.03.001 es_ES
dc.description.references Wang, C., Fang, Y., & Fang, H. (2015). Novel 2R3T and 2R2T parallel mechanisms with high rotational capability. Robotica, 35(2), 401-418. doi:10.1017/s0263574715000636 es_ES
dc.description.references Araujo-Gómez, P., Mata, V., Díaz-Rodríguez, M., Valera, A., & Page, A. (2017). Design and Kinematic Analysis of a Novel 3UPS/RPU Parallel Kinematic Mechanism With 2T2R Motion for Knee Diagnosis and Rehabilitation Tasks. Journal of Mechanisms and Robotics, 9(6). doi:10.1115/1.4037800 es_ES
dc.description.references Nabat, V., de la, O., Rodríguez, M., Company, O.Krut, S., and Pierrot, V., 2005, “Par4: Very High Speed Parallel Robot for Pick-and-Place,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Edmonton, AB, Canada, Aug. 2–6, pp. 553–558.10.1109/IROS.2005.1545143 es_ES
dc.description.references Lambert, P., and Herder, J. L., 2015, “A Novel Parallel Haptic Device With 7 Degrees of Freedom,” IEEE World Haptics Conference (WHC), Evanston, IL, June 22–26, pp. 183–188.10.1109/WHC.2015.7177711 es_ES
dc.description.references Hoevenaars, A. G. L., Gosselin, C., Lambert, P., & Herder, J. L. (2017). A Systematic Approach for the Jacobian Analysis of Parallel Manipulators with Two End-Effectors. Mechanism and Machine Theory, 109, 171-194. doi:10.1016/j.mechmachtheory.2016.10.022 es_ES
dc.description.references Ding, X., Kong, X., & Dai, J. S. (Eds.). (2016). Advances in Reconfigurable Mechanisms and Robots II. Mechanisms and Machine Science. doi:10.1007/978-3-319-23327-7 es_ES
dc.description.references Gosselin, C., & Angeles, J. (1990). Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 6(3), 281-290. doi:10.1109/70.56660 es_ES
dc.description.references Wang, J., & Gosselin, C. M. (2004). Kinematic Analysis and Design of Kinematically Redundant Parallel Mechanisms. Journal of Mechanical Design, 126(1), 109-118. doi:10.1115/1.1641189 es_ES
dc.description.references Isaksson, M. (2017). Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance. Journal of Mechanical Design, 139(4). doi:10.1115/1.4035677 es_ES
dc.description.references Aginaga, J., Zabalza, I., Altuzarra, O., & Nájera, J. (2012). Improving static stiffness of the parallel manipulator using inverse singularities. Robotics and Computer-Integrated Manufacturing, 28(4), 458-471. doi:10.1016/j.rcim.2012.02.003 es_ES
dc.description.references Ma, O., and Angeles, J., 1991, “Architecture Singularities of Platform Manipulators,” IEEE International Conference on Robotics and Automation (ICRA), Sacramento, CA, Apr. 9–11, pp. 1542–1547.10.1109/ROBOT.1991.131835 es_ES
dc.description.references Joshi, S. A., & Tsai, L.-W. (2002). Jacobian Analysis of Limited-DOF Parallel Manipulators. Journal of Mechanical Design, 124(2), 254-258. doi:10.1115/1.1469549 es_ES
dc.description.references St-Onge, B. M., & Gosselin, C. M. (2000). Singularity Analysis and Representation of the General Gough-Stewart Platform. The International Journal of Robotics Research, 19(3), 271-288. doi:10.1177/02783640022066860 es_ES
dc.description.references Merlet, J.-P. (1999). Determination of 6D Workspaces of Gough-Type Parallel Manipulator and Comparison between Different Geometries. The International Journal of Robotics Research, 18(9), 902-916. doi:10.1177/02783649922066646 es_ES
dc.description.references Bonev, I. A., & Ryu, J. (2001). A geometrical method for computing the constant-orientation workspace of 6-PRRS parallel manipulators. Mechanism and Machine Theory, 36(1), 1-13. doi:10.1016/s0094-114x(00)00031-8 es_ES
dc.description.references Bonev, I. A., & Ryu, J. (2001). A new approach to orientation workspace analysis of 6-DOF parallel manipulators. Mechanism and Machine Theory, 36(1), 15-28. doi:10.1016/s0094-114x(00)00032-x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem