- -

Selection of Sustainable Short-Span Bridge Design in Brazil

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selection of Sustainable Short-Span Bridge Design in Brazil

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kripka, Moacir es_ES
dc.contributor.author Yepes, V. es_ES
dc.contributor.author Milani, Cleovir José es_ES
dc.date.accessioned 2020-03-12T06:51:46Z
dc.date.available 2020-03-12T06:51:46Z
dc.date.issued 2019 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138741
dc.description.abstract [EN] Owing to the elevated cost of bridges, especially when compared to the cost of roads, their rational design and material selection are fundamental properties to consider when aiming to reduce the environmental impacts and lengthen the lifespan of the bridge. Especially in developing countries, the construction of new bridges (mainly short spanned) is still a necessity, and it is important that these new structures are designed according to all the sustainability parameters, instead of being based only on the construction cost. Thus, the present work aims to study short-span bridges by integrating environmental assessments into the decision-making process. To achieve this goal, three short-span bridge designs, proposed by public organizations in Brazil, are evaluated: Precast concrete bridge, mixed concrete/steel bridge, and timber bridge. In order to allow comparison, the same location and span are considered. The structures are evaluated considering the following quantitative aspects: Cost of construction, assembly and material transportation, lifespan, and environmental impact (measured by the global warming potential, GWP). In addition, some more subjective factors are considered, such as the architecture (layout and appearance) and the user¿s sensation of security. The selection is made by the adoption of two multi-criteria decision-making methods (analytic hierarchy process or AHP and Vikor). The results obtained with both methods indicate the mixed concrete/steel bridge as the most adequate alternative. Some additional analysis is performed in order to evaluate the influence of the qualitative aspects, as well as to study the importance of the variations in the costs on the results. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Brazilian National Council for Scientific and Technological Development (CNPq) to the first author, the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (Project: BIA2017-85098-R) to the second author, and the support of the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) to the third author. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cost es_ES
dc.subject Sustainability es_ES
dc.subject Bridges es_ES
dc.subject Design es_ES
dc.subject Environmental impact es_ES
dc.subject Decision making es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Selection of Sustainable Short-Span Bridge Design in Brazil es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11051307 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-85098-R/ES/DISEÑO Y MANTENIMIENTO OPTIMO ROBUSTO Y BASADO EN FIABILIDAD DE PUENTES E INFRAESTRUCTURAS VIARIAS DE ALTA EFICIENCIA SOCIAL Y MEDIOAMBIENTAL BAJO PRESUPUESTOS RESTRICTIVOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.description.bibliographicCitation Kripka, M.; Yepes, V.; Milani, CJ. (2019). Selection of Sustainable Short-Span Bridge Design in Brazil. Sustainability. 11(5):1307-01-1307-12. https://doi.org/10.3390/su11051307 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11051307 es_ES
dc.description.upvformatpinicio 1307-01 es_ES
dc.description.upvformatpfin 1307-12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 5 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\379845 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.description.references Fonte, T. F. da, & Calil Júnior, C. (2007). Pontes protendidas de madeira: alternativa técnico-econômica para vias rurais. Engenharia Agrícola, 27(2), 552-559. doi:10.1590/s0100-69162007000300026 es_ES
dc.description.references Economical Short Span Concrete Bridges https://www.concreteconstruction.net/how-to/construction/economical-short-span-concrete-bridges_o es_ES
dc.description.references Vladimir, M., & Mihai, V. (2016). Economical Solutions for Short-span Bridges Using Reinforced Glue Laminated Timber and Steel. Procedia Engineering, 156, 227-232. doi:10.1016/j.proeng.2016.08.291 es_ES
dc.description.references García-Segura, T., Penadés-Plà, V., & Yepes, V. (2018). Sustainable bridge design by metamodel-assisted multi-objective optimization and decision-making under uncertainty. Journal of Cleaner Production, 202, 904-915. doi:10.1016/j.jclepro.2018.08.177 es_ES
dc.description.references Yepes, V., Martí, J. V., & García-Segura, T. (2015). Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49, 123-134. doi:10.1016/j.autcon.2014.10.013 es_ES
dc.description.references García-Segura, T., & Yepes, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125, 325-336. doi:10.1016/j.engstruct.2016.07.012 es_ES
dc.description.references Ardeshir, A., Mohseni, N., Behzadian, K., & Errington, M. (2014). Selection of a Bridge Construction Site Using Fuzzy Analytical Hierarchy Process in Geographic Information System. Arabian Journal for Science and Engineering, 39(6), 4405-4420. doi:10.1007/s13369-014-1070-2 es_ES
dc.description.references García-Segura, T., Yepes, V., Martí, J. V., & Alcalá, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures, 11(7), 1190-1205. doi:10.1590/s1679-78252014000700007 es_ES
dc.description.references Gervásio, H., & Simões da Silva, L. (2012). A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems with Applications, 39(8), 7121-7131. doi:10.1016/j.eswa.2012.01.032 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2018). An Optimization-LCA of a Prestressed Concrete Precast Bridge. Sustainability, 10(3), 685. doi:10.3390/su10030685 es_ES
dc.description.references Allah Bukhsh, Z., Stipanovic, I., Klanker, G., O’ Connor, A., & Doree, A. G. (2018). Network level bridges maintenance planning using Multi-Attribute Utility Theory. Structure and Infrastructure Engineering, 15(7), 872-885. doi:10.1080/15732479.2017.1414858 es_ES
dc.description.references Penadés-Plà, V., García-Segura, T., Martí, J., & Yepes, V. (2016). A Review of Multi-Criteria Decision-Making Methods Applied to the Sustainable Bridge Design. Sustainability, 8(12), 1295. doi:10.3390/su8121295 es_ES
dc.description.references Zavadskas, E., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable Decision-Making in Civil Engineering, Construction and Building Technology. Sustainability, 10(2), 14. doi:10.3390/su10010014 es_ES
dc.description.references Du, G., & Karoumi, R. (2012). Life cycle assessment framework for railway bridges: literature survey and critical issues. Structure and Infrastructure Engineering, 10(3), 277-294. doi:10.1080/15732479.2012.749289 es_ES
dc.description.references Gervásio, H., & da Silva, L. S. (2008). Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 4(4), 251-269. doi:10.1080/15732470600627325 es_ES
dc.description.references Hammervold, J., Reenaas, M., & Brattebø, H. (2013). Environmental Life Cycle Assessment of Bridges. Journal of Bridge Engineering, 18(2), 153-161. doi:10.1061/(asce)be.1943-5592.0000328 es_ES
dc.description.references Itoh, Y., & Kitagawa, T. (2003). Using CO2 emission quantities in bridge lifecycle analysis. Engineering Structures, 25(5), 565-577. doi:10.1016/s0141-0296(02)00167-0 es_ES
dc.description.references Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83. doi:10.1504/ijssci.2008.017590 es_ES
dc.description.references Zamarrón-Mieza, I., Yepes, V., & Moreno-Jiménez, J. M. (2017). A systematic review of application of multi-criteria decision analysis for aging-dam management. Journal of Cleaner Production, 147, 217-230. doi:10.1016/j.jclepro.2017.01.092 es_ES
dc.description.references Manual de projeto e construção de pontes de madeira http://www.usp.br/agen/wp-content/uploads/Manual-de-Pontes-de-Madeira.pdf es_ES
dc.description.references Santoro, J. F., & Kripka, M. (2017). Studies on Environmental Impact Assessment of Reinforced Concrete in Different Life Cycle Phases. International Journal of Structural Glass and Advanced Materials Research, 1(2), 32-40. doi:10.3844/sgamrsp.2017.32.40 es_ES
dc.description.references Zuo, J., Pullen, S., Rameezdeen, R., Bennetts, H., Wang, Y., Mao, G., … Duan, H. (2017). Green building evaluation from a life-cycle perspective in Australia: A critical review. Renewable and Sustainable Energy Reviews, 70, 358-368. doi:10.1016/j.rser.2016.11.251 es_ES
dc.description.references Mahnert, K.-C., & Hundhausen, U. (2017). A review on the protection of timber bridges. Wood Material Science & Engineering, 13(3), 152-158. doi:10.1080/17480272.2017.1403955 es_ES
dc.description.references Concrete CO2 Fact Sheet www.nrmca.org/greenconcrete/concrete%20co2%20fact%20sheet%20june%202008.pdf es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem