- -

An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ibáñez-Escriche, Noelia es_ES
dc.contributor.author López de Maturana, E. es_ES
dc.contributor.author Noguera, J. L. es_ES
dc.contributor.author Varona, L. es_ES
dc.date.accessioned 2020-03-16T14:46:49Z
dc.date.available 2020-03-16T14:46:49Z
dc.date.issued 2010-11 es_ES
dc.identifier.issn 0021-8812 es_ES
dc.identifier.uri http://hdl.handle.net/10251/138961
dc.description.abstract [EN] We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach. es_ES
dc.description.sponsorship Financial support was provided by the IRTA, Lleida, Spain (grant 0502-21102). es_ES
dc.language Inglés es_ES
dc.publisher American Society of Animal Science es_ES
dc.relation.ispartof Journal of Animal Science es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Bayesian analysis es_ES
dc.subject Change point es_ES
dc.subject Litter size es_ES
dc.subject Piglet mortality es_ES
dc.subject Recursive model es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2527/jas.2009-2557 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/IRTA//0502-21102/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Ibáñez-Escriche, N.; López De Maturana, E.; Noguera, JL.; Varona, L. (2010). An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs. Journal of Animal Science. 88(11):3493-3503. https://doi.org/10.2527/jas.2009-2557 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2527/jas.2009-2557 es_ES
dc.description.upvformatpinicio 3493 es_ES
dc.description.upvformatpfin 3503 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 88 es_ES
dc.description.issue 11 es_ES
dc.relation.pasarela S\392955 es_ES
dc.contributor.funder Institut de Recerca i Tecnologia Agroalimentàries es_ES
dc.description.references Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., & Herring, W. (2005). Threshold-linear estimation of genetic parameters for farrowing mortality, litter size, and test performance of Large White sows. Journal of Animal Science, 83(3), 499-506. doi:10.2527/2005.833499x es_ES
dc.description.references Arango, J., Misztal, I., Tsuruta, S., Culbertson, M., Holl, J. W., & Herring, W. (2006). Genetic study of individual preweaning mortality and birth weight in Large White piglets using threshold-linear models. Livestock Science, 101(1-3), 208-218. doi:10.1016/j.livprodsci.2005.11.011 es_ES
dc.description.references Carlin, B. P., Gelfand, A. E., & Smith, A. F. M. (1992). Hierarchical Bayesian Analysis of Changepoint Problems. Applied Statistics, 41(2), 389. doi:10.2307/2347570 es_ES
dc.description.references Chib, S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics, 86(2), 221-241. doi:10.1016/s0304-4076(97)00115-2 es_ES
dc.description.references Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling1. Journal of Animal Science, 81(3), 604-610. doi:10.2527/2003.813604x es_ES
dc.description.references De los Campos, G., Gianola, D., Boettcher, P., & Moroni, P. (2006). A structural equation model for describing relationships between somatic cell score and milk yield in dairy goats1. Journal of Animal Science, 84(11), 2934-2941. doi:10.2527/jas.2006-016 es_ES
dc.description.references De los Campos, G., Gianola, D., & Heringstad, B. (2006). A Structural Equation Model for Describing Relationships Between Somatic Cell Score and Milk Yield in First-Lactation Dairy Cows. Journal of Dairy Science, 89(11), 4445-4455. doi:10.3168/jds.s0022-0302(06)72493-6 es_ES
dc.description.references Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science, 7(4), 473-483. doi:10.1214/ss/1177011137 es_ES
dc.description.references Gianola, D. (1982). Theory and Analysis of Threshold Characters. Journal of Animal Science, 54(5), 1079-1096. doi:10.2527/jas1982.5451079x es_ES
dc.description.references Gianola, D., & Sorensen, D. (2004). Quantitative Genetic Models for Describing Simultaneous and Recursive Relationships Between Phenotypes. Genetics, 167(3), 1407-1424. doi:10.1534/genetics.103.025734 es_ES
dc.description.references Hanenberg, E. H. A. ., Knol, E. ., & Merks, J. W. . (2001). Estimates of genetic parameters for reproduction traits at different parities in Dutch Landrace pigs. Livestock Production Science, 69(2), 179-186. doi:10.1016/s0301-6226(00)00258-x es_ES
dc.description.references Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109. doi:10.1093/biomet/57.1.97 es_ES
dc.description.references Ibáñez-Escriche, N., Varona, L., Casellas, J., Quintanilla, R., & Noguera, J. L. (2009). Bayesian threshold analysis of direct and maternal genetic parameters for piglet mortality at farrowing in Large White, Landrace, and Pietrain populations1. Journal of Animal Science, 87(1), 80-87. doi:10.2527/jas.2007-0670 es_ES
dc.description.references Knol, E. F., Ducro, B. J., van Arendonk, J. A. M., & van der Lende, T. (2002). Direct, maternal and nurse sow genetic effects on farrowing-, pre-weaning- and total piglet survival. Livestock Production Science, 73(2-3), 153-164. doi:10.1016/s0301-6226(01)00248-2 es_ES
dc.description.references Leenhouwers, J. I., van der Lende, T., & Knol, E. F. (1999). Analysis of stillbirth in different lines of pig. Livestock Production Science, 57(3), 243-253. doi:10.1016/s0301-6226(98)00171-7 es_ES
dc.description.references López de Maturana, E., Legarra, A., Varona, L., & Ugarte, E. (2007). Analysis of Fertility and Dystocia in Holsteins Using Recursive Models to Handle Censored and Categorical Data. Journal of Dairy Science, 90(4), 2012-2024. doi:10.3168/jds.2005-442 es_ES
dc.description.references De Maturana, E. L., Wu, X.-L., Gianola, D., Weigel, K. A., & Rosa, G. J. M. (2008). Exploring Biological Relationships Between Calving Traits in Primiparous Cattle with a Bayesian Recursive Model. Genetics, 181(1), 277-287. doi:10.1534/genetics.108.094888 es_ES
dc.description.references Noguera, J. L., Varona, L., Babot, D., & Estany, J. (2002). Multivariate analysis of litter size for multiple parities with production traits in pigs: I. Bayesian variance component estimation. Journal of Animal Science, 80(10), 2540. doi:10.2527/2002.80102540x es_ES
dc.description.references Rydhmer, L. (2000). Genetics of sow reproduction, including puberty, oestrus, pregnancy, farrowing and lactation. Livestock Production Science, 66(1), 1-12. doi:10.1016/s0301-6226(99)00170-0 es_ES
dc.description.references Sorensen, D., & Gianola, D. (2002). Likelihood, Bayesian, and MCMC Methods in Quantitative Genetics. Statistics for Biology and Health. doi:10.1007/b98952 es_ES
dc.description.references Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi:10.1111/1467-9868.00353 es_ES
dc.description.references Varona, L., Sorensen, D., & Thompson, R. (2007). Analysis of Litter Size and Average Litter Weight in Pigs Using a Recursive Model. Genetics, 177(3), 1791-1799. doi:10.1534/genetics.107.077818 es_ES
dc.description.references Vehtari, A., & Lampinen, J. (2002). Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities. Neural Computation, 14(10), 2439-2468. doi:10.1162/08997660260293292 es_ES
dc.description.references Wright, S. (1934). The Method of Path Coefficients. The Annals of Mathematical Statistics, 5(3), 161-215. doi:10.1214/aoms/1177732676 es_ES
dc.description.references Wu, X.-L., Heringstad, B., Chang, Y.-M., de los Campos, G., & Gianola, D. (2007). Inferring Relationships Between Somatic Cell Score and Milk Yield Using Simultaneous and Recursive Models. Journal of Dairy Science, 90(7), 3508-3521. doi:10.3168/jds.2006-762 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem