- -

Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic Problems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic Problems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Piqueras-García, Miguel Ángel es_ES
dc.contributor.author Company Rossi, Rafael es_ES
dc.contributor.author Jódar Sánchez, Lucas Antonio es_ES
dc.date.accessioned 2020-03-24T06:14:13Z
dc.date.available 2020-03-24T06:14:13Z
dc.date.issued 2019-07-01 es_ES
dc.identifier.issn 1085-3375 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139239
dc.description.abstract [EN] This paper deals with solving numerically partial integrodifferential equations appearing in biological dynamics models when nonlocal interaction phenomenon is considered. An explicit finite difference scheme is proposed to get a numerical solution preserving qualitative properties of the solution. Gauss quadrature rules are used for the computation of the integral part of the equation taking advantage of its accuracy and low computational cost. Numerical analysis including consistency, stability, and positivity is included as well as numerical examples illustrating the efficiency of the proposed method. es_ES
dc.description.sponsorship This work has been partially supported by the Ministerio de Economía y Competitividad Spanish grant MTM2017-89664-P. es_ES
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Abstract and Applied Analysis es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic Problems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2019/5787329 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Piqueras-García, MÁ.; Company Rossi, R.; Jódar Sánchez, LA. (2019). Stable Numerical Solutions Preserving Qualitative Properties of Nonlocal Biological Dynamic Problems. Abstract and Applied Analysis. 2019:1-7. https://doi.org/10.1155/2019/5787329 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2019/5787329 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2019 es_ES
dc.relation.pasarela S\390418 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Ahlin, A. C. (1962). On Error Bounds for Gaussian Cubature. SIAM Review, 4(1), 25-39. doi:10.1137/1004004 es_ES
dc.description.references Aronson, D. ., & Weinberger, H. . (1978). Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics, 30(1), 33-76. doi:10.1016/0001-8708(78)90130-5 es_ES
dc.description.references Berestycki, H., Nadin, G., Perthame, B., & Ryzhik, L. (2009). The non-local Fisher–KPP equation: travelling waves and steady states. Nonlinearity, 22(12), 2813-2844. doi:10.1088/0951-7715/22/12/002 es_ES
dc.description.references Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences, 98(24), 13763-13768. doi:10.1073/pnas.231499798 es_ES
dc.description.references Fakhar-Izadi, F., & Dehghan, M. (2012). An efficient pseudo-spectral Legendre-Galerkin method for solving a nonlinear partial integro-differential equation arising in population dynamics. Mathematical Methods in the Applied Sciences, 36(12), 1485-1511. doi:10.1002/mma.2698 es_ES
dc.description.references FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.x es_ES
dc.description.references Furter, J., & Grinfeld, M. (1989). Local vs. non-local interactions in population dynamics. Journal of Mathematical Biology, 27(1), 65-80. doi:10.1007/bf00276081 es_ES
dc.description.references Genieys, S., Volpert, V., & Auger, P. (2006). Pattern and Waves for a Model in Population Dynamics with Nonlocal Consumption of Resources. Mathematical Modelling of Natural Phenomena, 1(1), 63-80. doi:10.1051/mmnp:2006004 es_ES
dc.description.references Genieys, S., Bessonov, N., & Volpert, V. (2009). Mathematical model of evolutionary branching. Mathematical and Computer Modelling, 49(11-12), 2109-2115. doi:10.1016/j.mcm.2008.07.018 es_ES
dc.description.references Hamel, F., & Ryzhik, L. (2014). On the nonlocal Fisher–KPP equation: steady states, spreading speed and global bounds. Nonlinearity, 27(11), 2735-2753. doi:10.1088/0951-7715/27/11/2735 es_ES
dc.description.references Shivanian, E. (2013). Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics. Engineering Analysis with Boundary Elements, 37(12), 1693-1702. doi:10.1016/j.enganabound.2013.10.002 es_ES
dc.description.references Tian, C., Ling, Z., & Zhang, L. (2017). Nonlocal interaction driven pattern formation in a prey–predator model. Applied Mathematics and Computation, 308, 73-83. doi:10.1016/j.amc.2017.03.017 es_ES
dc.description.references Apreutesei, N., Bessonov, N., Volpert, V., … Vougalter, V. (2010). Spatial structures and generalized travelling waves for an integro-differential equation. Discrete & Continuous Dynamical Systems - B, 13(3), 537-557. doi:10.3934/dcdsb.2010.13.537 es_ES
dc.description.references Weinberger, H. F. (2002). On spreading speeds and traveling waves for growth and migration models in a periodic habitat. Journal of Mathematical Biology, 45(6), 511-548. doi:10.1007/s00285-002-0169-3 es_ES
dc.description.references Weinberger, H. F., Lewis, M. A., & Li, B. (2007). Anomalous spreading speeds of cooperative recursion systems. Journal of Mathematical Biology, 55(2), 207-222. doi:10.1007/s00285-007-0078-6 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem