- -

Ergodic properties of operators on spaces of functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Ergodic properties of operators on spaces of functions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.advisor Bonet Solves, José Antonio es_ES
dc.contributor.advisor Jorda Mora, Enrique es_ES
dc.contributor.author Rodríguez Arenas, Alberto es_ES
dc.date.accessioned 2020-03-26T10:36:14Z
dc.date.available 2020-03-26T10:36:14Z
dc.date.created 2020-02-21 es_ES
dc.date.issued 2020-03-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/139519
dc.description.abstract [ES] El objetivo de esta tesis es estudiar las propiedades ergódicas (acotación en potencias, ergodicidad media y ergodicidad media uniforme) de operadores definidos en varios espacios de funciones. En un espacio Hausdorff localmente convexo E, un operador T\in\L(E) es llamado acotado en potencias si el conjunto de sus iteradas es equicontinuo. Las medias de Cesàro de T son T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. El operador T se dice ergódico en media si la sucesión (T_[n])_n converge puntualmente y se dice uniformemente ergódico en media si la sucesión converge uniformemente en conjuntos acotados. En el Capítulo 1 se estudia el operador de multiplicación cuando está definido sobre espacios ponderados de funciones continuas y sobre sus límites inductivos y proyectivos. Trabajamos sobre un espacio topológico Hausdorff, normal y localmente compacto X. Dada una función continua phi, el operador de multiplicacion se define como M_ phi: f -> phi f. Una función continua v se llama peso si es estrictamente positiva. Los espacios (de Banach) ponderados de funciones continuas son C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf se anula en el infinito}, con la norma ||.||_v. En las Secciones 1.3 y 1.4 se centra la atención en límites indutivos y proyectivos de los espacios de la Sección 1.2. Si V=(v_n)_n es una familia decreciente de pesos, entonces los limites inductivos ponderados de funciones continuas son VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n es una familia creciente de pesos, los límites proyectivos ponderados de funciones continuas son CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportamiento es diferente para los límites de los C_v_n (resp. C_a_n) del de los límites de los C^0_v_n (resp. C^0_a_n). En la Sección 1.5 se determinan completamente el espectro y el espectro de Waelbroeck del operador de multiplicación. En la última Sección 1.6 se compara la topología del conjunto de multiplicadores entre límites proyectivos con la inducida por la topología de operadores de convergencia uniforme en acotados. El Capítulo 2 se centra en estudiar espacios ponderados de sucesiones y sus límites inductivos y proyectivos. Una sucesión v=(v(i))_i \in \C^\N se llama peso si es estrictamente positiva. Los espacios de Banach ponderados de sucesiones considerados son l_p(v), 1<= p<= infty y c_0(v). Dada una matriz de K\"othe A=(a_n)_n, el espacio escalonado de orden 1<= p<= infty se define como proj _n l _p (a_n) y proj _n c_0 (a_n). El espacio co-escalonado de orden 1<= p<= infty se define, para una familia decreciente de pesos V=(v_n)_n, como ind_n l _p (v_n) y ind_n c_0 (v_n). En las Secciones 2.2 y 2.3 se estudian las propiedades ergódicas y espectrales del operador de multiplicación. En la Sección 2.4 se caracteriza cuándo el operador de multiplicación es acotado o compacto, de manera similar a la continuidad. En la Sección 2.5, como en la Sección 1.6, la topología del conjunto de multiplicadores entre espacios escalonados se compara con la inducida por la topología de operadores de convergencia uniforme en acotados. También se estudia la topología del conjunto de operadores acotados. En la última Sección 2.6, los resultados de las secciones anteriores se aplican a los espacios de series de potencias, como casos particulares de los espacios escalonados. El Capítulo 3 trata el operador de composición dado por una aplicación holomorfa del disco unidad abierto complejo en sí mismo, considerado entre diferentes espacios de Banach de funciones holomorfas. Si phi : \D - > \D es holomorfa, el operador de composición es C_phi: f ->f o phi. En la Sección 3.2 se dan condiciones necesarias y suficientes para las propiedades ergódicas del operador de composición definido en un espacio de Banach de funciones holomorfas general asumiendo una o varias propiedades dadas. Los resultados de la Sección 3.2 se aplican en la Sección 3.3 a espacios cl� es_ES
dc.description.abstract [CA] L'objectiu d'aquesta tesi és estudiar les propietats ergòdiques (fitació en potències, ergodicitat mitjana i ergodicitat mitjana uniforme) d'operadors definits en diversos espais de funcions. En un espai Hausdorff localment convex E, un operador T\in\L(E) s'anomena fitat en potències si el conjunt de les seues iterades és equicontinu. Les mitjanes de Cesàro de T són T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. L'operador T és ergòdic en mitjana si la successió (T_[n])_n convergeix puntualment i és uniformement ergòdic en mitjana si la successió convergeix uniformement en conjunts fitats. Al Capítol 1 s'estudia l'operador de multiplicació quan està definit sobre espais ponderats de funcions contínues i sobre els seus límits inductius i projectius. Treballem sobre un espai topològic Hausdorff, normal i localment compacte X. Donada una funció contínua phi, l'operador de multiplicació es defineix com a M_ phi: f -> phi f. Una funció contínua v s'anomena pes si és estrictament positiva. Els espais (de Banach) ponderats de funcions contínues són C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf s'anul·la a l'infinit}, amb la norma ||.||_v. A les Seccions 1.3 i 1.4 es para atenció als límits inductius i projectius dels espais de la Secció 1.2. Si $V=(v_n)_n$ és una família decreixent de pesos, aleshores els límits inductius ponderats de funcions contínues són VC=ind _n C_v_n y V_0C=ind _n C^0_v_n. Si A=(a_n)_n és una família creixent de pesos, aleshores els límits projectius ponderats de funcions contínues CA=proj_n C_a_n y CA_0=proj _n C^0_a_n. El comportament és diferent per als límits dels C_v_n (resp. C_a_n) del dels límits dels C^0_v_n (resp. C^0_a_n). A la Secció 1.5 es determinen completament l'espectre i l'espectre de Waelbroeck de l'operador de multiplicació. A la darrera Secció 1.6 es compara la topologia del conjunt de multiplicadors entre límits projectius amb la induïda per la topologia d'operadors de convergència uniforme en fitats. Al Capítol 2 es dedica a l'estudi d'espais ponderats de successions i els seus límits inductius i projectius. Una successió v=(v(i))_i \in \C^\N s'anomena pes si és estrictament positiva. Els espais de Banach ponderats de successions considerats l_p(v), 1<= p<= infty i c_0(v). Donada una matriu de Köthe A=(a_n)_n, l'espai esglaonat d'ordre 1<= p<= infty es defineix com a proj _n l _p (a_n) y proj _n c_0 (a_n). L'espai co-esglaonat d'ordre 1<= p<= infty es defineix, per a una família decreixent de pesos V=(v_n)_n, com a ind_n l _p (v_n) i ind_n c_0 (v_n). A les Seccions 2.2 i 2.3 s'estudien les propietats ergòdiques i espectrals de l'operador de multiplicació. A la Secció 2.4 es caracteritza quan l'operador de multiplicació és fitat o compacte, d'un mode similar a la continuïtat. A la Secció 2.5, com a la Secció 1.6, la topologia del conjunt de multiplicadors entre espais esglaonats es compara amb la induïda per la topologia d'operadors de convergència uniforme en fitats. També s'estudia la topologia del conjunt d'operadors fitats. A la darrera Secció 2.6, els resultats de les seccions anteriors s'apliquen als espais de sèries de potències, com casos particulars dels espais esglaonats. El Capítol 3 estudia l'operador de composició donat per una aplicació holomorfa del disc unitat obert complex en sí mateix, considerat entre dife\-rents espais de Banach de funcions holomorfes. Si phi : \D - > \D és holomorfa, aleshores l'operador de composició és C_phi: f ->f o phi. A la Secció 3.2 es donen condicions necessàries i suficients per a les propietats ergòdiques de l'operador de composició definit en un espai de Banach de funcions holomorfes general assumint una o més propietats donades. Els resultats de la Secció 3.2 s'apliquen a la Secció 3.3 per a espais clàssics de funcions holomorfes. ca_ES
dc.description.abstract [EN] The aim of this thesis is to study the ergodic properties of some operators defined on several spaces of functions. In a locally convex Hausdorff space E, an operator T\in L(E) is called power bounded if the set of its iterates is equicontinuous. The Cesàro means of T are T_[n] = 1/n (T+T^2+...+ T^m), n\in\N. The operator T is called mean ergodic if the sequence (T_[n])_n converges pointwise and it is called uniformly mean ergodic if the sequence converges uniformly on bounded sets. In Chapter 1, the multiplication operator is studied when defined on weighted spaces of continuous functions and their inductive and projective limits. We work with a Hausdorff, normal, locally compact topological space X. Given a continuous function phi (a symbol), the multiplication operator is M_ phi: f -> phi f. A continuous function v is a weight if it is strictly positive. The (Banach) weighted spaces of continuous functions are C_v:= {f\in C(X) : ||f||_v:=\sup_(x\in X) v(x)|f(x)|< infty}, C_v ^0 :={f\in C(X) : vf vanishes at infinity}, with the norm ||.||_v. The Sections 1.3 and 1.4 are devoted to inductive and projective limits of the spaces in Section 1.2. If V=(v_n)_n is a decreasing family of weights, the weighted inductive limits of continuous functions are VC=ind _n C_v_n and V_0C=ind _n C^0_v_n. If A=(a_n)_n is an increasing family of weights, the weighted projective limits of continuous functions are CA=proj_n C_a_n and CA_0=proj _n C^0_a_n. The behaviour is different for the limits of the C_v_n (resp. C_a_n) and the limits of the C^0_v_n (resp. C^0_a_n). In Section 1.5 the spectrum and the Waelbroeck spectrum are completely determined. In the final Section 1.6 the topology of the set of multipliers between projective limits is compared with the one induced by the operator topology of uniform convergence on bounded sets. The work of Chapter 2 is devoted to weighted sequence spaces and their inductive and projective limits. A sequence v=(v(i))_i \in \C^\N is called a weight if it is strictly positive. The weighted Banach spaces of sequences considered are l_p(v), 1<= p<= infty and c_0(v). Given A=(a_n)_n, a Köthe matrix, the echelon space of order 1<= p<= infty is defined by proj _n l _p (a_n) and proj _n c_0 (a_n). The co-echelon space of order 1<= p<= infty is defined, for a decreasing family of weights V=(v_n)_n, by ind_n l _p (v_n) and ind_n c_0 (v_n). In the Sections 2.2 and 2.3 ergodic and spectral properties of the multiplication operator are studied. In Section 2.4 it is characterized when the multiplication operator is bounded or compact, in similar terms than continuity. In Section 2.5, as in Section 1.6, the topology of the set of multipliers between echelon spaces is compared with the one induced by the operator topology of uniform convergence on bounded sets. Also the topology of the set of bounded multiplication operators is studied. In the final Section 2.6, the results of the previous sections are applied to the power series spaces, as particular cases of echelon spaces. Chapter 3 deals with the composition operator given by a holomorphic self-map of the complex open unit disc, when considered between different Banach spaces of holomorphic functions. If phi : \D - > \D is holomorphic, the composition operator is C_phi: f ->f o phi. In Section 3.2 necessary and sufficient conditions are given for ergodic properties of a composition operator defined on a general Banach space of holomorphic functions under the assumption of one or many of given properties. The results of Section 3.2 are applied in Section 3.3 to classical spaces of holomorphic functions, particularly, weighted Bergman spaces of infinite type H_v and H_v^0, Bloch spaces B_p and B_p ^0, Bergman spaces A^p and Hardy spaces H^p. en_EN
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Análisis Funcional es_ES
dc.subject Teoría de Operadores es_ES
dc.subject Análisis Complejo es_ES
dc.subject Ergodicidad Media es_ES
dc.subject Acotación en Potencias es_ES
dc.subject Funciones Continuas es_ES
dc.subject Funciones Holomorfas es_ES
dc.subject Dinámica de Operadores es_ES
dc.subject Functional Analysis es_ES
dc.subject Operator Theory es_ES
dc.subject Complex Analysis es_ES
dc.subject Mean Ergodicity es_ES
dc.subject Power Boundedness es_ES
dc.subject Continuous Functions es_ES
dc.subject Holomorphic Functions es_ES
dc.subject Operator Dynamics es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Ergodic properties of operators on spaces of functions es_ES
dc.type Tesis doctoral es_ES
dc.identifier.doi 10.4995/Thesis/10251/139519 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Rodríguez Arenas, A. (2020). Ergodic properties of operators on spaces of functions [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139519 es_ES
dc.description.accrualMethod TESIS es_ES
dc.type.version info:eu-repo/semantics/acceptedVersion es_ES
dc.relation.pasarela TESIS\12338 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem