- -

Matemáticas para la industria del agua

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Matemáticas para la industria del agua

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Pérez, Rafael es_ES
dc.contributor.author Fuertes, Vicente S. es_ES
dc.contributor.author Iglesias, Pedro I. es_ES
dc.contributor.author López, P. Amparo es_ES
dc.date.accessioned 2020-04-02T11:47:58Z
dc.date.available 2020-04-02T11:47:58Z
dc.date.issued 2004-06-30
dc.identifier.issn 1134-2196
dc.identifier.uri http://hdl.handle.net/10251/140028
dc.description.abstract [ES] En el campo del agua existe una enorme diversidad de actividades e intereses y, por tanto, de áreas de trabajo. Los problemas que se plantean en estas áreas son auténticos problemas de ingeniería y, como consecuencia, las ayudas que ciertas técnicas de Matemática Aplicada pueden prestar son realmente importantes. Por un lado, es preciso disponer de herramientas de análisis que permitan realizar simulaciones fiables de los distintos modelos que se plantean analizando diversas configuraciones, modos de funcionamiento, estados de carga, etc. con los que estudiar instalaciones ya existentes a partir de los datos básicos que las caracterizan. Se trata de procesos deterministas cuya plasmación matemática es a través de conjuntos acoplados de distintos tipos de ecuaciones, algebraicas, diferenciales ordinarias y en derivadas parciales, típicamente no lineales, para los que se precisan técnicas numéricas específicas. Además, dada la incertidumbre a que están sometidos muchos de los datos (espe es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Ingeniería del agua es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Régimen de caudales es_ES
dc.subject Parámetros hidrológicos es_ES
dc.subject Variabilidad hidrológica es_ES
dc.subject Frecuencia y ecosistema fluvial es_ES
dc.title Matemáticas para la industria del agua es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/ia.2004.2526
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros de Telecomunicación - Escola Tècnica Superior d'Enginyers de Telecomunicació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Izquierdo Sebastián, J.; Pérez, R.; Fuertes, VS.; Iglesias, PI.; López, PA. (2004). Matemáticas para la industria del agua. Ingeniería del agua. 11(2):171-189. https://doi.org/10.4995/ia.2004.2526 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/ia.2004.2526 es_ES
dc.description.upvformatpinicio 171 es_ES
dc.description.upvformatpfin 189 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1886-4996
dc.relation.pasarela OJS\2526 es_ES
dc.description.references A. J. Chorin, J. E. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, New York, 1990. es_ES
dc.description.references J. Abreu, R. Guarga, J. Izquierdo (Eds.), Transitorios y oscilaciones en sistemas hidráulicos a presión, Unidad Docente Mecánica de Fluidos, U.P.V. Valencia (1995). es_ES
dc.description.references J. Izquierdo, P. L. Iglesias, Mathematical Modelling of Hydraulic Transients in Simple Systems. Mathematical and Computer Modelling 35 (2002) 801-812, 2002. es_ES
dc.description.references D. J. Wood, A. M. Rayes. Reliability of Algorithms for Pipe Network Analysis. J. Hydraulics Division, ASCE, 107(HY10), 1145-1161. es_ES
dc.description.references Grupo Mecánica de Fluidos. Análisis, Diseño, Operación y Mantenimiento de Redes Hidráulicas a Presión. UPV, 1997. es_ES
dc.description.references W. Rauch, J. Bertrand-Krajewski, P. Krebs, O. Mark, W. Schilling, M. Schütze, A. Vanrolleghem. Mathematical Modelling of Integrated Urban Drainage Systems. Second International Conference on Interactions between sewers, treatment plants and receiving waters in urban areas - Interurba II. Lisboa, Portugal, pp. 89-106, 2001 es_ES
dc.description.references J. A. Fox. Transient flow in pipes, open channels and Sewers. Ellis Horwood Ltd. 1989. es_ES
dc.description.references F. Coen, B. Petersen, P. A. Vanrolleghem, B. Vanderhaegen, M. Henze. Model-based Characterization of Hydraulic, Kinetic and Influent Properties or an Industrial WWTP. Sat. Sci. Tech. Vol. 37, No. 12, pp. 317-326, 1998. es_ES
dc.description.references V. Espert, P. A. López, J. Izquierdo, Fundamentals of a water quality model solution for dissolved oxygen in one-dimensional receiving system. Numerical Modelling of Hydrodynamic Systems. Proc. of the Intrnl. Workshop, 444-445, 1999. es_ES
dc.description.references H. Cross. Analysis of Flow in Networks of Conduits or Conductors. Bulletin No. 286. University of Illinois Engineering Experimental Station, Urbana, Illinois, 1936. es_ES
dc.description.references U. Shamir, C. D. D. Howard. Water Distribution Systems Analysis. J. Hydraulics Division, ASCE, 94(HY1), 219-234, 1994. es_ES
dc.description.references D. J. Wood, C. O. A. Charles. Hydraulic Network Analysis Using Linear Theory. J. Hydraulics Division, ASCE 98(HY7), Proc. Paper 9031, 1157-1170, 1972. es_ES
dc.description.references E. Todini, S. Pilati. A gradient algorithm for the analysis of pipe networks. Proceedings International Conference on Computer Applications for Water Supply and Distribution. Leucester, Polytechnic, 8-10 September, 1987. es_ES
dc.description.references Grupo Mecánica de Fluidos. SARA, Software de Análisis de Redes de Agua, Manual de Usuario. Ed. Grupo Mecánica de Fluidos, UPV, 1998. es_ES
dc.description.references L. A. Rossman. Manual de usuario de EPANET. Drinking Water Research Group. Risk Reduction Engineering Laboratory. US EPA. Traducido por Grupo Mecánica de Fluidos, UPV, 1997. es_ES
dc.description.references Cabrera, E., Izquierdo, J., Abreu, J.M., Iglesias, P.L. Filling of pipelines with undulating elevation profiles. Journal of Hydraulic Engineering, ASCE, ISSN 0733-9429, 1997. es_ES
dc.description.references Izquierdo, J., Fuertes, V.S., Cabrera, E., Iglesias, P.L., García-Serra, J. Pipeline start-up with entrapped air. Journal of Hydraulic Research, ISSN 0022-1686, 1999. es_ES
dc.description.references H. M. Chaudhry, Applied Hydraulic Transients. Van Nostrand Reinhold, New York, N.Y. (1987). es_ES
dc.description.references E. B. Wylie, V. L. Streeter, Fluid transients in Systems. Prentice-Hall, Englewood Cliffs, New Jersey (1993). es_ES
dc.description.references D. J. Wood, R. G. Dorsch, C. Lightener, Wave plan Analysis of Unsteady Flow in Closed Conduits. Proc. ASCE J. Hyd. Div., 92(HT2) 83-110 (1965). es_ES
dc.description.references D. J. Wood, J. E. Funk, SURGE 5.0. Computer analysis of transient flow in pipe networks including surge control devices. User's Manual, Civil Engineering Software Center, Department of Civil Engineering, University of Kentucky. Lexington, Kentucky (USA), (1988a). es_ES
dc.description.references H. M. Chaudhry, Numerical Solution of Transient-Flow Equations, Proc. Hydraulic Specialty Conf. Amer. Soc. Civ. Engrs., pp 663-690 (1983). es_ES
dc.description.references A. J. Baker, Finite Element Computational Fluid Mechanics, McGraw-Hill, New York, (1983). es_ES
dc.description.references C.S. Watt, Application of Finite Element Method to Unsteady Flow Problems, Ph.D. Thesis, Sunderland Polytechnic (1975). es_ES
dc.description.references J. A. Liggett, The Boundary Element Method-Some Fluid Applications, In Multidimensional Fluid Transients, (Edited by H. M. Chaudhry and C.S. Martin), Amer. Soc. Mech. Engrg. 1-8, (1984). es_ES
dc.description.references D. Gottlieb, S.A. Orszag, Theory of Spectral Methods for Mixed Initial-Boundary Value Problems, Parts I and II, ICASE, NASA Langley Research Center, Hampton, Virginia, (1977). es_ES
dc.description.references D. Gottlieb, M. Y. Hussaini, S. A. Orzag, Theory and Applications of Spectral Methods, In Spectral Methods for Partial Differential Equations, (Edited by Voigt, R.G., Gottlieb, D. and Hussaini, M.Y.). SIAM, Philadelphia, (1984). es_ES
dc.description.references J. Izquierdo, P. L. Iglesias, E. Cabrera, DYAGATS - Simulación mediante ordenador personal de Transitorios en Sistemas Simples, VII Encontro nacional de saneamiento basico, Coimbra, Portugal, (1996). es_ES
dc.description.references P. L. Iglesias, Modelo General de Análisis de Redes Hidráulicas a Presión en Régimen Transitorio. Tesis Doctoral, Septiembre, (2001). es_ES
dc.description.references J. Izquierdo, P. L. Iglesias, Mathematical Modelling of Hydraulic Transients in Complex Systems. Mathematical and Computer Modelling. Pendiente de publicación. es_ES
dc.description.references D. C. Wiggert, M. J. Sundquist. Fixed-grid Characteristics for Pipeline Transients. J. Hydr. Engrg., ASCE, 103(13, 1403-1415, 1977. es_ES
dc.description.references D. E. Goldberg, E. B. Wylie. Characteristics Method using Time-Line Interpolation. J. Hydr. Engrg., ASCE 109(5), 670-683, 1983. es_ES
dc.description.references C. Lai. Comprehensive Method of Characteristics for Flow Simulation. J. Hydr. Engrg., ASCE 114(9), 1074-1095, 1989. es_ES
dc.description.references M. Holly, A. Preissmann. Accurate calculation of transport in two dimensions. J. Hydr. Engrg., ASCE 103(11), 1259-1277, 1977. es_ES
dc.description.references I. A. Sibetheros, E. R. Holley, J. M. Branski. Spline Interpolation for Waterhammer Analysis. J. Hydr. Engrg., ASCE 117(10), 1332-1349. es_ES
dc.description.references B. W. Karney, M. S. Ghidaoui. Flexible Discretization Algorithm for Fixed-Grid MOC in Pipelines. J. Hydr. Engrg., ASCE 123(11), 1004-1011, 1997. es_ES
dc.description.references M. S. Ghidaoui, B. W. Karney. Equivalent Differential Equations in Fixed-Grid Characteristics Method. J. Hydr. Engrg., ASCE 120(10), 1159-1175, 1994. es_ES
dc.description.references X. J. Wang, M. F, Lambert, A. R. Simpson, J. A. Ligget, J. P. Vitkovsky. Leak Detection in Pipelines using the Damping of Fluid Transients. Journal of Hydraulic Engineering, Vol. 128, No. 7, 697-711, 2002. es_ES
dc.description.references B. Brunone, M Ferrante. Detecting leaks in pressurized pipes by means of transients. Journal of Hydraulic Research. Vol. 39, No. 4, 1-9, 2002. es_ES
dc.description.references W. Mpesha, M. H. Chaudhry, S.L.Gassman. Leak Detection in Pipes by Frequency Response Method using a Step Excitation. Journal of Hydraulic Research. Vol. 40, No. 1, 55-62, 2002. es_ES
dc.description.references S. Ranjithan, J. W. Eheart and J. H. Garrett. Application of neural network in groundwater remediation under conditions of uncertainty. New uncertainty concepts in hydrology and water resources. Z. W. Kundzewicz (Ed.). Cambridge University Press, U.K., 133-140, 1995. es_ES
dc.description.references J. Izquierdo. Desarrollo de una herramienta para la optimizacion de la gestion de recursos hidricos en sistemas de distribucion de agua basada en las redes neuronales. Proyecto CICYT de la Dirección General de Investigación del Ministerio de Ciencia y Tecnología, de referencia REN2000-1152/HID. Resultados aún no publicados, 2002. es_ES
dc.description.references R. Pérez, M. Andreu, J. Izquierdo. Diseño de Redes de Distribución de Agua. Cap. del libro Ingeniería Hidráulica Aplicada a los Sistemas de Distribución de Agua. E. Grupo Mecánica de Fluidos, 653-727, 1966. es_ES
dc.description.references E. Alperovits, U. Shamir. Design of Optimal Water Distribution Systems. Water Resources Res., 1(6), 885-900, 1977. es_ES
dc.description.references A. R. Simpson, G. C. Dandy, L. J. Murphy. Genetic algorithms compared to other techniques for pipe optimization. J. Water Resour. Plng. and Mgmt., ASCE, 120(4), 423-443, 1994. es_ES
dc.description.references D. Savic, G. Walters. Genetic Algorithms for Least-Cost Design of Water Distribution Systems. J. Water Resour. Plng. and Mgmt., ASCE, 123(2), 67-77, 1997. es_ES
dc.description.references Ch. Xu, I. C. Goulter. Reliability-Based Optimal Design of Water Distribution Systems. J. Water Resour. Plng. and Mgmt., ASCE, 125(6), 352-362, 1999. es_ES
dc.description.references I. Goulter. Analytical and simulation models for reliability analysis in water distribution systems. Improving efficiency and reliability in water distribution systems. E. Cabrera y A. Vela (Eds.), Kluwer Academic Press, London, 235-266, 1995. es_ES
dc.description.references I. Goulter, A. Coals. Quantitative approaches to reliability in pipe networks. J. Transp. Engrg., ASCE 112(3), 287-301, 1986. es_ES
dc.description.references I. Goulter, F. Bouchart. Reliability-constrained pipe network model. J. Hydr. Engrg., ASCE 116(2), 211-229, 1990. es_ES
dc.description.references L. W. Mays. Methodologies for assessment of aging water distribution systems. Rep. No. CRWR 227, Ctr. For Res. In Water Resour., The University of Texas, Austin, Tex., 1989. es_ES
dc.description.references R. Guercio, Z. Xu. Linearized optimization model for reliability-based design of water systems. J. Hydr. Engrg., ASCE 123(11), 1020-1026, 1997. es_ES
dc.description.references A. Ostfeld, U. Shamir. Design of Optimal Reliable Multiquality Water-Supply Systems. J. of Plng. Resour. and Mgmgt., ASCE 122(5), 322- 333, 1996. es_ES
dc.description.references A. Ben-Tal, G. Eiger, J, Outrata, J. Zowe. A nondifferentiable approach to decomposable optimization problems with an application to the design of water distribution networks. Advances in optimization -lecture notes in economics and mathematical systems, No. 382, W. Jetti and D. Pallaschke, eds. Springer-Verlag, New York, N.Y., 197-216, 1992. es_ES
dc.description.references B. C. Yen, S. T. Cheng, C. S. Melching. First-order reliability analysis. Stochastic and risk analysis in hydraulic engineering. B. C. Yen, e., Water Resources Publications, Littleton, Col., 1-36, 1986. es_ES
dc.description.references C. Xu, I. C. Goulter. Uncertainty analysis of water distribution networks. Stochastic Hydraulics '96. K. S. Tickle et al. Eds., Balkema, Rotterdam, The Netherlands, 609-616, 1996. es_ES
dc.description.references Y. K. Tung. Uncertainty analysis in water resources engineering. Stochastic Hydraulics '96. K. S. Tickle et al. Eds., Balkema, Rotterdam, The Netherlands, 29-46, 1996. es_ES
dc.description.references A. Kaufmann, M. M. Gupta. Introduction to fuzzy arithmetics: Theory and Applications. Van Nostrand Reinhold, New York, 1991. es_ES
dc.description.references A. Bardossy, L. Duckstein. Fuzzy rule-based modeling with application to geophysical, economic, biological and engineering systems, CRC, London, 1995. es_ES
dc.description.references E. Hansen. Global Optimization using Interval Analysis. Dekker, New York, 1992. es_ES
dc.description.references A. Neumaier. Interval Methods for System of Equations. Cambridge University Press, Cambridge, U.K., 1990. es_ES
dc.description.references R. Revelli, L. Ridolfi. Fuzzy Approach for Analysis of Pipe Networks. J. Hydr. Engrg., ASCE 128(1), 93-101, 2002. es_ES
dc.description.references D. F. Yates, A.B. Templeman, T. B. Boffey. The computational complexity of the problem of determining least capital cost designs for water supply systems. Engrg. Optimization, 7(2), 142-155, 1984. es_ES
dc.description.references Z. Michalewicz. Genetic algorithms + data structures = evolutionary programs. Springer-Verlag, New York, Inc., New York, N.Y., 1992. es_ES
dc.description.references G. A. Walters, G. Lohbeck. Optimal layout of tree networks using genetic algorithms. Engrg. Optimization, 22(1), 27-48, 1993. es_ES
dc.description.references L. J. Murphy, A. R. Simpson. Genetic algorithms in pipe network optimization. Res. Rep. No. R39. Dept. of Civil Envir. Engrg., Univ. of Adelaide, Australia, 1992. es_ES
dc.description.references G. A. Walters, R. G. Cembrowicz. Optimal design of water distribution networks. Water Supply Systems, state of the art and future trends, E. Cabrera y F. Martínez, Eds., Computational Mechanics Publications, Southampton, 91-117, 1993. es_ES
dc.description.references D. A. Savic, G. A. Walters. Genetic Algorithms for lesast-cost design of water distribution networks. J. of Water Plng. and Mgmt., 123(2), 67-77, 1997. es_ES
dc.description.references Z. Y. Wu, A. R. Simpson. A self-adaptative boundary search genetic algorithm and its application to water distribution systems. J. Hydr. Research, Vol. 40, No. 2, 191-199, 2002. es_ES
dc.description.references D. A. Savic, G. A. Walters. Genetic Algorithms and evolution programs for decision support. Proc., 4th Int. Symp.: Advances in Logistics Sci. and Software, J. Knezevic, ed., Exeter, U.K., 70-80, 1994. es_ES
dc.description.references F. Martínez, R. Pérez, J. Izquierdo. Optimum Design and Reliability in Water Distribution Systems, in Improving efficiency and reliability in water distribution systems. Kluwer Academic Pub. Dordrecht, Boston, London (1995). es_ES
dc.description.references T. R. Neelakantan, N. V. Pundarikanthan. Neural network-based simulation-optimization model for reservoir operation. J. Water Resour. Plng. and Mgmt., ASCE (2), 57-62, 2000. es_ES
dc.description.references V. M. Johnson, L. R. Leah. Accuracy of neural network approximators in simulation-optimization. J. Water Resour. Plng. and Mgmt., ASCE(2), 48-56, 2000. es_ES
dc.description.references D. R. Hush, B. G. Horne. Progress in supervised neural networks -What is new since Lippmann. Signal Processing Mag., 4, 8-39, 1993. es_ES
dc.description.references J. Izquierdo, A. Escribano. Predimensionado de calderines antiariete mediante una red neuronal. Por aparecer. 2002. es_ES
dc.description.references A. Likas, K. Blekas, A. Safylopatis. Application of the Fuzzy Min-Max Neural Network Classifier to Problems with Continuous and Discrete Attributes. Proc. of IEEE Workshop on Neural Networks for Signal Processing (NNSP'94), pp 163-170, 1994. es_ES
dc.description.references K. Blekas, A. Likas, A. Safylopatis. A Fuzzy Neural Network Approach to Classification Based on Proximity Characteristics Patterns. Proc. 9th IEEE Int. Conference on tools with Artificial Intelligence, Nov 1997, Newport Beach, CA, USA. es_ES
dc.description.references M. B. Abbott, V. M. Babovic, J. A. Cunge. Towards the hydraulics of the hydroinformatics era. J. Hydr. Research, Vol. 39, No. 4, 339-349, 2001. es_ES
dc.description.references Y. B. Dibike. Developing generic hydrodynamic models using artificial neural networks. J. Hydr. Research, Vol. 40, No. 2, 183-190, 2002. es_ES
dc.description.references E. Cumberbatch, A. Fitt. Mathematical Modeling. Case Studies from Industry. Cambridge University Press, 2001. es_ES
dc.description.references G. R. Fulford, P. Broadbridge. Industrial Mathematics. Case studies in the diffusion of heat and matter. Cambridge University Press, 2002. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem