- -

Experimental determination of nanofiltration models: application to nitrate removal

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Experimental determination of nanofiltration models: application to nitrate removal

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sancho, M. es_ES
dc.contributor.author Alvarez-Blanco, Silvia es_ES
dc.contributor.author Kombo, G.O.M. es_ES
dc.contributor.author García-Fayos, Beatriz es_ES
dc.date.accessioned 2020-04-06T08:57:25Z
dc.date.available 2020-04-06T08:57:25Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1944-3994 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140243
dc.description.abstract [EN] Nowadays, nitrate contamination of groundwater is a growing problem both in developed and developing countries. Such contamination comes mainly from the intensive use of nitrogen fertilizers in agriculture. Other possible sources of water contamination by nitrates are improper discharges of industrial effluents, the inadequate management of leachate from landfill of municipal solid waste and effluents from intensive farming. The maximum permissible concentration of nitrates in the water for public consumption in the EU countries is 50mg/L, although the World Health Organization established a value of 25mg/L to be considered a quality water. This problem of nitrate contamination, widespread in countries of the European Union, is very important in Spain, where there are some regions with a high presence of aquifers with nitrate concentrations significantly higher than the established limits. Among the possible treatments for nitrate removal from contaminated waters, nanofiltration (NF) is a technically proven process that eliminates nitrates without causing a significant imbalance in the rest of dissolved salts. In this work, the removal of nitrates from water using a commercial NF membrane is studied. Synthetic feeds with levels of nitrate concentration higher than the ones usually found in contaminated aquifers have been considered. On the other hand, the experimental results have been fitted to the solution-diffusion model, having found mathematical expressions that can be used to predict membrane performance for feed concentrations higher than 100mg/L. The model considers the concentration on the surface of the membrane, estimated by the film theory model. It has been proved that concentration polarization cannot be neglected for this application. The tested membrane allows nitrate decontamination of water (concentration below the legal limit) in one pass for values of feed concentration up to 100mg/L, with a transmembrane pressure of 5bar. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Desalination and Water Treatment es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Nanofiltration es_ES
dc.subject Nitrate removal es_ES
dc.subject Experimental results es_ES
dc.subject Solution-diffusion model es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title Experimental determination of nanofiltration models: application to nitrate removal es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1080/19443994.2016.1173380 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Sancho, M.; Alvarez-Blanco, S.; Kombo, G.; García-Fayos, B. (2016). Experimental determination of nanofiltration models: application to nitrate removal. Desalination and Water Treatment. 57(48):22852-22859. https://doi.org/10.1080/19443994.2016.1173380 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename EuroMed 2015: Desalination For Clean Water & Energy es_ES
dc.relation.conferencedate Mayo 10-14,2015 es_ES
dc.relation.conferenceplace Palermo, Italy es_ES
dc.relation.publisherversion https://doi.org/10.1080/19443994.2016.1173380 es_ES
dc.description.upvformatpinicio 22852 es_ES
dc.description.upvformatpfin 22859 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 48 es_ES
dc.relation.pasarela S\332515 es_ES
dc.description.references Van der Bruggen, B., Mänttäri, M., & Nyström, M. (2008). Drawbacks of applying nanofiltration and how to avoid them: A review. Separation and Purification Technology, 63(2), 251-263. doi:10.1016/j.seppur.2008.05.010 es_ES
dc.description.references Van der Bruggen, B., & Vandecasteele, C. (2003). Removal of pollutants from surface water and groundwater by nanofiltration: overview of possible applications in the drinking water industry. Environmental Pollution, 122(3), 435-445. doi:10.1016/s0269-7491(02)00308-1 es_ES
dc.description.references Bhatnagar, A., & Sillanpää, M. (2011). A review of emerging adsorbents for nitrate removal from water. Chemical Engineering Journal, 168(2), 493-504. doi:10.1016/j.cej.2011.01.103 es_ES
dc.description.references Santafé-Moros, A., Gozálvez-Zafrilla, J. M., & Lora-García, J. (2005). Performance of commercial nanofiltration membranes in the removal of nitrate ions. Desalination, 185(1-3), 281-287. doi:10.1016/j.desal.2005.02.080 es_ES
dc.description.references Garcia, F., Ciceron, D., Saboni, A., & Alexandrova, S. (2006). Nitrate ions elimination from drinking water by nanofiltration: Membrane choice. Separation and Purification Technology, 52(1), 196-200. doi:10.1016/j.seppur.2006.03.023 es_ES
dc.description.references Tepuš, B., Simonič, M., & Petrinić, I. (2009). Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. Journal of Hazardous Materials, 170(2-3), 1210-1217. doi:10.1016/j.jhazmat.2009.05.105 es_ES
dc.description.references Van der Bruggen, B., Everaert, K., Wilms, D., & Vandecasteele, C. (2001). Application of nanofiltration for removal of pesticides, nitrate and hardness from ground water: rejection properties and economic evaluation. Journal of Membrane Science, 193(2), 239-248. doi:10.1016/s0376-7388(01)00517-8 es_ES
dc.description.references Bowen, W. R., & Welfoot, J. S. (2002). Modelling the performance of membrane nanofiltration—critical assessment and model development. Chemical Engineering Science, 57(7), 1121-1137. doi:10.1016/s0009-2509(01)00413-4 es_ES
dc.description.references Garba, Y., Taha, S., Gondrexon, N., & Dorange, G. (1999). Ion transport modelling through nanofiltration membranes. Journal of Membrane Science, 160(2), 187-200. doi:10.1016/s0376-7388(99)00085-x es_ES
dc.description.references Wang, D.-X., Su, M., Yu, Z.-Y., Wang, X.-L., Ando, M., & Shintani, T. (2005). Separation performance of a nanofiltration membrane influenced by species and concentration of ions. Desalination, 175(2), 219-225. doi:10.1016/j.desal.2004.10.009 es_ES
dc.description.references Santafé-Moros, A., Gozálvez-Zafrilla, J. M., & Lora-García, J. (2008). Applicability of the DSPM with dielectric exclusion to a high rejection nanofiltration membrane in the separation of nitrate solutions. Desalination, 221(1-3), 268-276. doi:10.1016/j.desal.2007.01.083 es_ES
dc.description.references Cséfalvay, E., Pauer, V., & Mizsey, P. (2009). Recovery of copper from process waters by nanofiltration and reverse osmosis. Desalination, 240(1-3), 132-142. doi:10.1016/j.desal.2007.11.070 es_ES
dc.description.references Wang, R., Li, Y., Wang, J., You, G., Cai, C., & Chen, B. H. (2012). Modeling the permeate flux and rejection of nanofiltration membrane separation with high concentration uncharged aqueous solutions. Desalination, 299, 44-49. doi:10.1016/j.desal.2012.05.014 es_ES
dc.description.references Silva, P., Han, S., & Livingston, A. G. (2005). Solvent transport in organic solvent nanofiltration membranes. Journal of Membrane Science, 262(1-2), 49-59. doi:10.1016/j.memsci.2005.03.052 es_ES
dc.description.references Yaroshchuk, A., Martínez-Lladó, X., Llenas, L., Rovira, M., & de Pablo, J. (2011). Solution-diffusion-film model for the description of pressure-driven trans-membrane transfer of electrolyte mixtures: One dominant salt and trace ions. Journal of Membrane Science, 368(1-2), 192-201. doi:10.1016/j.memsci.2010.11.037 es_ES
dc.description.references Koter, S. (2006). Determination of the parameters of the Spiegler–Kedem–Katchalsky model for nanofiltration of single electrolyte solutions. Desalination, 198(1-3), 335-345. doi:10.1016/j.desal.2006.02.009 es_ES
dc.description.references Lau, W. J., Ismail, A. F., & Firdaus, S. (2013). Car wash industry in Malaysia: Treatment of car wash effluent using ultrafiltration and nanofiltration membranes. Separation and Purification Technology, 104, 26-31. doi:10.1016/j.seppur.2012.11.012 es_ES
dc.description.references De la Rubia, Á., Rodríguez, M., León, V. M., & Prats, D. (2008). Removal of natural organic matter and THM formation potential by ultra- and nanofiltration of surface water. Water Research, 42(3), 714-722. doi:10.1016/j.watres.2007.07.049 es_ES
dc.description.references Caus, A., Vanderhaegen, S., Braeken, L., & Van der Bruggen, B. (2009). Integrated nanofiltration cascades with low salt rejection for complete removal of pesticides in drinking water production. Desalination, 241(1-3), 111-117. doi:10.1016/j.desal.2008.01.061 es_ES
dc.description.references Schock, G., & Miquel, A. (1987). Mass transfer and pressure loss in spiral wound modules. Desalination, 64, 339-352. doi:10.1016/0011-9164(87)90107-x es_ES
dc.description.references Yeh, H. S., & Wills, G. B. (1970). Diffusion coefficient of sodium nitrate in aqueous solution at 25.deg. as a function of concentration from 0.1 to 1.0M. Journal of Chemical & Engineering Data, 15(1), 187-189. doi:10.1021/je60044a025 es_ES
dc.description.references Koutsou, C. P., Yiantsios, S. G., & Karabelas, A. J. (2009). A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number. Journal of Membrane Science, 326(1), 234-251. doi:10.1016/j.memsci.2008.10.007 es_ES
dc.description.references Paugam, L., Taha, S., Cabon, J., & Dorange, G. (2003). Elimination of nitrate ions in drinking waters by nanofiltration. Desalination, 152(1-3), 271-274. doi:10.1016/s0011-9164(02)01073-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem