- -

Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carpitella, Silvia es_ES
dc.contributor.author Brentan, B. M. es_ES
dc.contributor.author Montalvo Arango, Idel es_ES
dc.contributor.author Izquierdo Sebastián, Joaquín es_ES
dc.contributor.author Certa, A. es_ES
dc.date.accessioned 2020-04-08T05:58:41Z
dc.date.available 2020-04-08T05:58:41Z
dc.date.issued 2019-08-13 es_ES
dc.identifier.issn 1606-9749 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140499
dc.description.abstract [EN] This work presents a multi-criteria-based approach to automatically select specific non-dominated solutions from a Pareto front previously obtained using multi-objective optimization to find optimal solutions for pump control in a water supply system. Optimal operation of pumps in these utilities is paramount to enable water companies to achieve energy efficiency in their systems. The Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (FTOPSIS) is used to rank the Pareto solutions found by the non-dominated sorting genetic algorithm (NSGA-II) employed to solve the multi-objective problem. Various scenarios are evaluated under leakage uncertainty conditions, resulting in fuzzy solutions for the Pareto front. This paper shows the suitability of the approach for quasi real-world problems. In our case-study, the obtained solutions for scenarios including leakage represent the best trade-off among the optimal solutions, under some considered criteria, namely, operational cost, operational lack of service, pressure uniformity and network resilience. Potential future developments could include the use of clustering alternatives to evaluate the goodness of each solution under the considered evaluation criteria. es_ES
dc.language Inglés es_ES
dc.publisher IWA Publishing es_ES
dc.relation.ispartof Water Science & Technology: Water Supply es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Multi-criteria analysis es_ES
dc.subject Multi-objective optimization es_ES
dc.subject Optimal pump scheduling es_ES
dc.subject Water distribution systems es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.2166/ws.2019.115 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Carpitella, S.; Brentan, BM.; Montalvo Arango, I.; Izquierdo Sebastián, J.; Certa, A. (2019). Multi-criteria analysis applied to multi-objective optimal pump scheduling in water systems. Water Science & Technology: Water Supply. 19(8):2338-2346. https://doi.org/10.2166/ws.2019.115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.2166/ws.2019.115 es_ES
dc.description.upvformatpinicio 2338 es_ES
dc.description.upvformatpfin 2346 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\394817 es_ES
dc.description.references Ancău, M., & Caizar, C. (2010). The computation of Pareto-optimal set in multicriterial optimization of rapid prototyping processes. Computers & Industrial Engineering, 58(4), 696-708. doi:10.1016/j.cie.2010.01.015 es_ES
dc.description.references Aşchilean, I., Badea, G., Giurca, I., Naghiu, G. S., & Iloaie, F. G. (2017). Choosing the Optimal Technology to Rehabilitate the Pipes in Water Distribution Systems Using the AHP Method. Energy Procedia, 112, 19-26. doi:10.1016/j.egypro.2017.03.1109 es_ES
dc.description.references Brentan, B., Meirelles, G., Luvizotto, E., & Izquierdo, J. (2018). Joint Operation of Pressure-Reducing Valves and Pumps for Improving the Efficiency of Water Distribution Systems. Journal of Water Resources Planning and Management, 144(9), 04018055. doi:10.1061/(asce)wr.1943-5452.0000974 es_ES
dc.description.references Certa, A., Enea, M., Galante, G. M., & La Fata, C. M. (2017). ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: An alternative to the risk priority number. Computers & Industrial Engineering, 108, 100-110. doi:10.1016/j.cie.2017.04.018 es_ES
dc.description.references Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1-9. doi:10.1016/s0165-0114(97)00377-1 es_ES
dc.description.references Cruz-Reyes, L., Fernandez, E., Sanchez, P., Coello Coello, C. A., & Gomez, C. (2017). Incorporation of implicit decision-maker preferences in multi-objective evolutionary optimization using a multi-criteria classification method. Applied Soft Computing, 50, 48-57. doi:10.1016/j.asoc.2016.10.037 es_ES
dc.description.references Farmani, R., Ingeduld, P., Savic, D., Walters, G., Svitak, Z., & Berka, J. (2007). Real-time modelling of a major water supply system. Proceedings of the Institution of Civil Engineers - Water Management, 160(2), 103-108. doi:10.1680/wama.2007.160.2.103 es_ES
dc.description.references Hadas, Y., & Nahum, O. E. (2016). Urban bus network of priority lanes: A combined multi-objective, multi-criteria and group decision-making approach. Transport Policy, 52, 186-196. doi:10.1016/j.tranpol.2016.08.006 es_ES
dc.description.references Hamdan, S., & Cheaitou, A. (2017). Supplier selection and order allocation with green criteria: An MCDM and multi-objective optimization approach. Computers & Operations Research, 81, 282-304. doi:10.1016/j.cor.2016.11.005 es_ES
dc.description.references Ho, W. (2008). Integrated analytic hierarchy process and its applications – A literature review. European Journal of Operational Research, 186(1), 211-228. doi:10.1016/j.ejor.2007.01.004 es_ES
dc.description.references Jowitt, P. W., & Germanopoulos, G. (1992). Optimal Pump Scheduling in Water‐Supply Networks. Journal of Water Resources Planning and Management, 118(4), 406-422. doi:10.1061/(asce)0733-9496(1992)118:4(406) es_ES
dc.description.references Jowitt, P. W., & Xu, C. (1990). Optimal Valve Control in Water‐Distribution Networks. Journal of Water Resources Planning and Management, 116(4), 455-472. doi:10.1061/(asce)0733-9496(1990)116:4(455) es_ES
dc.description.references Kurek, W., & Ostfeld, A. (2013). Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. Journal of Environmental Management, 115, 189-197. doi:10.1016/j.jenvman.2012.11.030 es_ES
dc.description.references Lima, G. M., Luvizotto, E., & Brentan, B. M. (2017). Selection and location of Pumps as Turbines substituting pressure reducing valves. Renewable Energy, 109, 392-405. doi:10.1016/j.renene.2017.03.056 es_ES
dc.description.references Mala-Jetmarova, H., Sultanova, N., & Savic, D. (2017). Lost in optimisation of water distribution systems? A literature review of system operation. Environmental Modelling & Software, 93, 209-254. doi:10.1016/j.envsoft.2017.02.009 es_ES
dc.description.references Montalvo, I., Izquierdo, J., Pérez-García, R., & Herrera, M. (2014). Water Distribution System Computer-Aided Design by Agent Swarm Optimization. Computer-Aided Civil and Infrastructure Engineering, 29(6), 433-448. doi:10.1111/mice.12062 es_ES
dc.description.references Odan, F. K., Ribeiro Reis, L. F., & Kapelan, Z. (2015). Real-Time Multiobjective Optimization of Operation of Water Supply Systems. Journal of Water Resources Planning and Management, 141(9), 04015011. doi:10.1061/(asce)wr.1943-5452.0000515 es_ES
dc.description.references Ostfeld, A., Uber, J. G., Salomons, E., Berry, J. W., Hart, W. E., Phillips, C. A., … Walski, T. (2008). The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms. Journal of Water Resources Planning and Management, 134(6), 556-568. doi:10.1061/(asce)0733-9496(2008)134:6(556) es_ES
dc.description.references Todini, E. (2000). Looped water distribution networks design using a resilience index based heuristic approach. Urban Water, 2(2), 115-122. doi:10.1016/s1462-0758(00)00049-2 es_ES
dc.description.references Zaidan, A. A., Zaidan, B. B., Al-Haiqi, A., Kiah, M. L. M., Hussain, M., & Abdulnabi, M. (2015). Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS. Journal of Biomedical Informatics, 53, 390-404. doi:10.1016/j.jbi.2014.11.012 es_ES
dc.description.references Żak, J., & Kruszyński, M. (2015). Application of AHP and ELECTRE III/IV Methods to Multiple Level, Multiple Criteria Evaluation of Urban Transportation Projects. Transportation Research Procedia, 10, 820-830. doi:10.1016/j.trpro.2015.09.035 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem