- -

Multi-sector thermo-physiological head simulator for headgear research

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-sector thermo-physiological head simulator for headgear research

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez Guillamón, Natividad es_ES
dc.contributor.author Psikuta, Agnes es_ES
dc.contributor.author Corberán, José M. es_ES
dc.contributor.author Rossi, Rene Michel es_ES
dc.contributor.author Annaheim, Simon es_ES
dc.date.accessioned 2020-04-17T12:49:03Z
dc.date.available 2020-04-17T12:49:03Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0020-7128 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140867
dc.description.abstract [EN] A novel thermo-physiological human head simulator for headgear testing was developed by coupling a thermal head manikin with a thermo-physiological model. As the heat flux at head-site is directly measured by the head manikin, this method provides a realistic quantification of the heat transfer phenomena occurring in the headgear, such as moisture absorption-desorption cycles, condensation, moisture migration across clothing layers. Before coupling, the opportunities of the head manikin for representing the human physiology were evaluated separately. The evaluation revealed reduced precision in forehead and face temperature predictions under extreme heterogeneous temperature distributions and no initial limitation for simulating temperature changes observed in the human hysiology. es_ES
dc.description.sponsorship This work has been supported by the State Secretariat for Education, Research and Innovation (SBFI C11.0137) under the grant COST Action TU1101 project (http://www.bicycle-helmets.eu/) The authors gratefully acknowledge Dr. Matthew Morrissey and Rolf Stampfli from Empa (St. Gallen, Switzerland) for their valuable contribution to programming of the coupling interface and Barbara Koelblen from Empa (St. Gallen, Switzerland) and Warsaw University of Technology (Warsaw, Poland) for providing the validation data and consultation. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof International Journal of Biometeorology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Thermo-physiology es_ES
dc.subject Head simulator es_ES
dc.subject Headgear es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Multi-sector thermo-physiological head simulator for headgear research es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00484-016-1209-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//TU1101/EU/Towards safer bicycling through optimization of bicycle helmets and usage/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SBFI//C11.0137/CH/Prediction of wearing comfort of bicycle helmets/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biomecánica de Valencia - Institut Universitari Mixt de Biomecànica de València es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Martínez Guillamón, N.; Psikuta, A.; Corberán, JM.; Rossi, RM.; Annaheim, S. (2017). Multi-sector thermo-physiological head simulator for headgear research. International Journal of Biometeorology. 61(2):273-285. https://doi.org/10.1007/s00484-016-1209-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00484-016-1209-9 es_ES
dc.description.upvformatpinicio 273 es_ES
dc.description.upvformatpfin 285 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\332616 es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Staatssekretariat für Bildung, Forschung und Innovation, Suiza es_ES
dc.description.references ASTM F2370-10, 2010 (2010) Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. ASTM International, West Conshohocken es_ES
dc.description.references Buono MJ, Ulrich RL (1998) Comparison of mean skin temperature using “covered” versus “uncovered” contact thermistors. Physiol Meas 19:297–300 es_ES
dc.description.references Burton AC (1944) An analysis of the physiological effects of clothing in hot environments. National Research Council, Canada es_ES
dc.description.references Casa DJ, Becker SM, Ganio MS, Brown CM, Yeargin SW, Roti MW, Siegler J, Blowers JA, Glaviano NR, Huggins RA, Armstrong LE, Maresh CM (2007) Validity of devices that assess body temperature during outdoor exercise in the heat. J Athl Train 42:333–342 es_ES
dc.description.references Curran AR, Peck SD, Hepokoski MA, Burke RA (2014) Physiological model control of a sweating thermal manikin. In: Ambience’14&10i3m, Tampere, Finland, 7-9 Sept 2014, pp. 7–9 es_ES
dc.description.references Easton C, Fudge BW, Pitsiladis YP (2007) Rectal, telemetry pill and tympanic membrane thermometry during exercise heat stress. J Therm Biol 32:78–86. doi: 10.1016/j.jtherbio.2006.10.004 es_ES
dc.description.references Fan J, Cheng X-J (2005a) Heat and moisture transfer with sorption and phase change through clothing assemblies: part I: experimental investigation. Text Res J 75:900–105. doi: 10.1177/004051750507500301 es_ES
dc.description.references Fan J, Cheng X-J (2005b) Heat and moisture transfer with sorption and phase change through clothing assemblies: part II: theoretical modeling, simulation, and comparison with experimental results. Text Res J 75:187–196. doi: 10.1177/004051750507500301 es_ES
dc.description.references Farrington RB, Rugh JP, Bharathan D, Burke R (2004) Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments. In: Society of Automotive Engineers Technical Paper. pp. 2004–01–2345. SAE International. doi: 10.4271/2004-01-2345 es_ES
dc.description.references Farrington RB, Rugh JP, Bharathan D, Paul H, Bue G, Trevino L (2005). Using a sweating manikin, controlled by a human physiological model, to evaluate liquid cooling garments, in: Society of Automotive Engineers Technical Paper. doi: 10.4271/2005-01-2971 es_ES
dc.description.references Fiala D, Havenith G (2015) Modelling human heat transfer and temperature regulation, in: Springer-Verlag Berlin Heidelberg (Ed.), Studies in Mechanobiology, Tissue Engineering and Biomaterials. pp. 1–38. doi: 10.1007/8415 es_ES
dc.description.references Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972 es_ES
dc.description.references Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi: 10.1007/s004840100099 es_ES
dc.description.references Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441. doi: 10.1007/s00484-011-0424-7 es_ES
dc.description.references Haslam RA, Parsons KC (1994) Using computer-based models for predicting human thermal responses to hot and cold environments. Ergonomics 37:399–416. doi: 10.1080/00140139408963659 es_ES
dc.description.references Havenith G, Richards MG, Wang X, Bröde P, Candas V, Den Hartog E, Holmér I, Kuklane K, Meinander H, Nocker W (2008) Apparent latent heat of evaporation from clothing: attenuation and heat pipe effects. J Appl Physiol 104:142–149. doi: 10.1152/japplphysiol.00612.2007 es_ES
dc.description.references Havenith G, Bröde P, den Hartog E, Kuklane K, Holmer I, Rossi RM, Richards M, Farnworth B, Wang X (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi: 10.1152/japplphysiol.01271.2012 es_ES
dc.description.references ISO15831 (2004) Clothing—physiological effects—measurement of thermal insulation by means of a thermal manikin. International Organisation for Standardisation, Geneva (Switzerland) es_ES
dc.description.references ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva (Switzerland) es_ES
dc.description.references Jones BW (2002) Capabilities and limitations of thermal models for use in thermal comfort standards. Energy Build 34:653–659. doi: 10.1016/S0378-7788(02)00016-6 es_ES
dc.description.references Kobayashi Y, Tanabe S (2013) Development of JOS-2 human thermoregulation model with detailed vascular system. Build Environ 66:1–10. doi: 10.1016/j.buildenv.2013.04.013 es_ES
dc.description.references Li Y, Li F, Liu Y, Luo Z (2004) An integrated model for simulating interactive thermal processes in human-clothing system. J Therm Biol 29:567–575. doi: 10.1016/j.jtherbio.2004.08.071 es_ES
dc.description.references Lotens WA (1993) Heat transfer from human wearing clothing. Techincal University Delft, Delft es_ES
dc.description.references Lotens WA, Havenith G (1994) Effects of moisture absorption in clothing on the human heat balance. Ergonomics 38:1092–1113 es_ES
dc.description.references Lotens WA, van de Linde FJG, Havenith G (1995) Effect of condensation in clothing on heat transfer. Ergonomics 38:1114–1131 es_ES
dc.description.references Mäkinen T, Gavhed D, Holmér I, Rintamäki H (2000) Thermal responses to cold wind of thermoneutral and cooled subjects. Eur J Appl Physiol 81:397–402. doi: 10.1007/s004210050060 es_ES
dc.description.references Martínez N, Psikuta A, Rossi RM, Corberán JM, Annaheim S, (2016) Global and local heat transfer analysis for bicycle helmets using thermal head manikins. Int J Ind Ergon. 53:157–166. doi: 10.1016/j.ergon.2015.11.012 es_ES
dc.description.references Martínez N, Psikuta A, Annaheim S, Corberán JM, Rossi RM (2015) Validation of a physiological model for controlling a thermal head simulator. 16th International Conference on Environmental Ergonomics, Portsmouth es_ES
dc.description.references Munir A, Takada S, Matsushita T (2009) Re-evaluation of Stolwijk’s 25-node human thermal model under thermal-transient conditions: prediction of skin temperature in low-activity conditions. Build Environ 44:1777–1787. doi: 10.1016/j.buildenv.2008.11.016 es_ES
dc.description.references Niedermann R, Wyss E, Annaheim S, Psikuta A, Davey S, Rossi RM (2014) Prediction of human core body temperature using non-invasive measurement methods. Int J Biometeorol 58:7–15. doi: 10.1007/s00484-013-0687-2 es_ES
dc.description.references Priego Quesada JI, Martínez Guillamón N, Cibrián Ortiz De Anda RM, Psikuta A, Annaheim S, Rossi RM, Corberán Salvador JM, Pérez Soriano P, Salvador Palmer R (2015) Effect of perspiration on skin temperature measurements by infrared thermography and contact thermometry during aerobic cycling. Infrared Phys Technol 72:68–76. doi: 10.1016/j.infrared.2015.07.008 es_ES
dc.description.references Psikuta A (2009) Development of an “artificial human” for clothing research. De Monfort University, Leicester es_ES
dc.description.references Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192 es_ES
dc.description.references Psikuta A, Fiala D, Laschewski G, Jendritzky G, Richards M, Blazejczyk K, Mekjavič I, Rintamäki H, de Dear R, Havenith G (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460 es_ES
dc.description.references Psikuta A, Niedermann R, Rossi RM (2013a) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol. doi: 10.1007/s00484-013-0669-4 es_ES
dc.description.references Psikuta A, Wang L-C, Rossi RM (2013b) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi: 10.1080/15459624.2013.766562 es_ES
dc.description.references Psikuta A, Kuklane K, Bogdan A, Havenith G, Annaheim S, Rossi RM (2016) Opportunities and constraints of presently used thermal manikins for thermophysiological simulation of the human body. Int J Biometeorol 60:435–446. doi: 10.1007/s00484-015-1041-7 es_ES
dc.description.references Redortier B, Voelcker T (2010) Implementation of thermo-physiological control on a multi-zone manikin. In: 8th International Meeting for Thermal Manikin and Modeling (8I3M), Victoria, Canada, 22-26 August 2010 es_ES
dc.description.references Redortier B, Voelcker T (2011) A 38-zone thermal manikin with physiological control: validation for simulating thermal response of the body for sports exercise in cold and hot environment, in: 14th International Conference on Environmental Ergonomics. Napflio, Greece es_ES
dc.description.references Rugh JP, Farrington RB, Bharathan D, Vlahinos A, Burke R, Huizenga C, Zhang H (2004) Predicting human thermal comfort in a transient nonuniform thermal environment. Eur J Appl Physiol 92:721–727 es_ES
dc.description.references Smith CE (1991) A transient three-dimensional model of the thermal system. MSc thesis, Kansas State University, Kansas es_ES
dc.description.references Stolwijk JA (1971) A mathematical model of physiological temperature regulation in man. NASA Contractor Report No. CR-1855, National Aeronautics and Space Administration, Washington, DC es_ES
dc.description.references Tanabe S, Kobayashi K, Nakano J, Ozeki Y (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646 es_ES
dc.description.references Teunissen LPJ, de Haan A, de Koning JJ, Daanen HAM (2012) Telemetry pill versus rectal and esophageal temperature during extreme rates of exercise-induced core temperature change. Physiol Meas 33:915–924. doi: 10.1088/0967-3334/33/6/915 es_ES
dc.description.references Wagner JA, Horvath SM (1985) Influences of age and gender on human thermoregulatory responses to cold exposures. J Appl Physiol 58:180–186 es_ES
dc.description.references Werner J, Webb P (1993) A six-cylinder model of human thermoregulation for general use on personal computers. Ann Physiol Anthropol 12:123–134. doi: 10.2114/ahs1983.12.123 es_ES
dc.description.references Wissler EH (1985) Mathematical simulation of human thermal behaviour using whole body models. In: Shitzer A, E.R.C. 1198 (eds) Heat transfer in medicine and biology—analysis and applications, vol 13. Plenum, New York, pp 325–373 es_ES
dc.description.references Wissler EH, Havenith G (2009) A simple theoretical model of heat and moisture transport in multi-layer garments in cool ambient air. Eur J Appl Physiol 105:797–808. doi: 10.1007/s00421-008-0966-5 es_ES
dc.description.references Wu H, Fan J (2008) Study of heat and moisture transfer within multi-layer clothing assemblies consisting of different types of battings. Int J Therm Sci 47:641–647. doi: 10.1016/j.ijthermalsci.2007.04.008 es_ES
dc.description.references Xu X, Werner J (1997) A dynamic model of the human/clothing/environment-system. Appl Hum Sc 16:61–75 es_ES
dc.description.references Zhang H (2003) Human thermal sensation and comfort in transient and non-uniform thermal environments. University of California, Berkeley es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem