- -

Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application

Mostrar el registro completo del ítem

Pérez-Sánchez, M.; Sánchez-Romero, F.; Ramos, HM.; López Jiménez, PA. (2017). Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application. Water. 9(10). https://doi.org/10.3390/w9100799

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140884

Ficheros en el ítem

Metadatos del ítem

Título: Optimization Strategy for Improving the Energy Efficiency of Irrigation Systems by Micro Hydropower: Practical Application
Autor: Pérez-Sánchez, Modesto Sánchez-Romero, Francisco-Javier Ramos, Helena M. López Jiménez, Petra Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable advances in the performance of pressurized irrigation networks. Nowadays, the use of micro hydropower ...[+]
Palabras clave: Irrigation systems , Optimization strategy , Water-energy nexus , Pump working as turbine
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w9100799
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w9100799
Código del Proyecto:
info:eu-repo/grantAgreement/Interreg//EAPA_198%2F2016/
Agradecimientos:
This research was supported by the program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2016/2017 in the project "Maximization of the global efficiency in PATs in laboratory ...[+]
Tipo: Artículo

References

Goonetilleke, A., & Vithanage, M. (2017). Water Resources Management: Innovation and Challenges in a Changing World. Water, 9(4), 281. doi:10.3390/w9040281

Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59-84. doi:10.1016/j.rser.2013.09.010

Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024 [+]
Goonetilleke, A., & Vithanage, M. (2017). Water Resources Management: Innovation and Challenges in a Changing World. Water, 9(4), 281. doi:10.3390/w9040281

Coelho, B., & Andrade-Campos, A. (2014). Efficiency achievement in water supply systems—A review. Renewable and Sustainable Energy Reviews, 30, 59-84. doi:10.1016/j.rser.2013.09.010

Nogueira Vilanova, M. R., & Perrella Balestieri, J. A. (2014). Energy and hydraulic efficiency in conventional water supply systems. Renewable and Sustainable Energy Reviews, 30, 701-714. doi:10.1016/j.rser.2013.11.024

McNabola, A., Coughlan, P., Corcoran, L., Power, C., Prysor Williams, A., Harris, I., … Styles, D. (2013). Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy, 16(1), 168-183. doi:10.2166/wp.2013.164

Lydon, T., Coughlan, P., & McNabola, A. (2017). Pump-As-Turbine: Characterization as an Energy Recovery Device for the Water Distribution Network. Journal of Hydraulic Engineering, 143(8), 04017020. doi:10.1061/(asce)hy.1943-7900.0001316

Pasten, C., & Santamarina, J. C. (2012). Energy and quality of life. Energy Policy, 49, 468-476. doi:10.1016/j.enpol.2012.06.051

Kanakoudis, V., & Papadopoulou, A. (2014). Allocating the cost of the carbon footprint produced along a supply chain, among the stakeholders involved. Journal of Water and Climate Change, 5(4), 556-568. doi:10.2166/wcc.2014.101

Kanakoudis, V., Tsitsifli, S., & Papadopoulou, A. (2012). Integrating the Carbon and Water Footprints’ Costs in the Water Framework Directive 2000/60/EC Full Water Cost Recovery Concept: Basic Principles Towards Their Reliable Calculation and Socially Just Allocation. Water, 4(1), 45-62. doi:10.3390/w4010045

Kanakoudis, V. (2014). Three alternative ways to allocate the cost of the CF produced in a water supply and distribution system. Desalination and Water Treatment, 54(8), 2212-2222. doi:10.1080/19443994.2014.934117

George, B., Malano, H., Davidson, B., Hellegers, P., Bharati, L., & Massuel, S. (2011). An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development. Agricultural Water Management, 98(5), 733-746. doi:10.1016/j.agwat.2010.12.004

Huesemann, M. H. (2002). The limits of technological solutions to sustainable development. Clean Technologies and Environmental Policy, 5(1), 21-34. doi:10.1007/s10098-002-0173-8

Sitzenfrei, R., & von Leon, J. (2014). Long-time simulation of water distribution systems for the design of small hydropower systems. Renewable Energy, 72, 182-187. doi:10.1016/j.renene.2014.07.013

Patelis, M., Kanakoudis, V., & Gonelas, K. (2016). Pressure Management and Energy Recovery Capabilities Using PATs. Procedia Engineering, 162, 503-510. doi:10.1016/j.proeng.2016.11.094

Patelis, M., Kanakoudis, V., & Gonelas, K. (2017). Combining pressure management and energy recovery benefits in a water distribution system installing PATs. Journal of Water Supply: Research and Technology - Aqua, jws2017018. doi:10.2166/aqua.2017.018

Fecarotta, O., Aricò, C., Carravetta, A., Martino, R., & Ramos, H. M. (2014). Hydropower Potential in Water Distribution Networks: Pressure Control by PATs. Water Resources Management, 29(3), 699-714. doi:10.1007/s11269-014-0836-3

Gilron, J. (2014). Water-energy nexus: matching sources and uses. Clean Technologies and Environmental Policy, 16(8), 1471-1479. doi:10.1007/s10098-014-0853-1

Emec, S., Bilge, P., & Seliger, G. (2015). Design of production systems with hybrid energy and water generation for sustainable value creation. Clean Technologies and Environmental Policy, 17(7), 1807-1829. doi:10.1007/s10098-015-0947-4

Okadera, T., Chontanawat, J., & Gheewala, S. H. (2014). Water footprint for energy production and supply in Thailand. Energy, 77, 49-56. doi:10.1016/j.energy.2014.03.113

Herath, I., Deurer, M., Horne, D., Singh, R., & Clothier, B. (2011). The water footprint of hydroelectricity: a methodological comparison from a case study in New Zealand. Journal of Cleaner Production, 19(14), 1582-1589. doi:10.1016/j.jclepro.2011.05.007

Baki, S., & Makropoulos, C. (2014). Tools for Energy Footprint Assessment in Urban Water Systems. Procedia Engineering, 89, 548-556. doi:10.1016/j.proeng.2014.11.477

Giugni, M., Fontana, N., & Ranucci, A. (2014). Optimal Location of PRVs and Turbines in Water Distribution Systems. Journal of Water Resources Planning and Management, 140(9), 06014004. doi:10.1061/(asce)wr.1943-5452.0000418

Pérez-Sánchez, M., Sánchez-Romero, F. J., López-Jiménez, P. A., & Ramos, H. M. (2018). PATs selection towards sustainability in irrigation networks: Simulated annealing as a water management tool. Renewable Energy, 116, 234-249. doi:10.1016/j.renene.2017.09.060

Corcoran, L., McNabola, A., & Coughlan, P. (2016). Optimization of Water Distribution Networks for Combined Hydropower Energy Recovery and Leakage Reduction. Journal of Water Resources Planning and Management, 142(2), 04015045. doi:10.1061/(asce)wr.1943-5452.0000566

Ramos, H., & Borga, A. (1999). Pumps as turbines: an unconventional solution to energy production. Urban Water, 1(3), 261-263. doi:10.1016/s1462-0758(00)00016-9

Ramos, H. M., Kenov, K. N., & Vieira, F. (2011). Environmentally friendly hybrid solutions to improve the energy and hydraulic efficiency in water supply systems. Energy for Sustainable Development, 15(4), 436-442. doi:10.1016/j.esd.2011.07.009

Calibración de Modelos Hidrológicoshttp://www.imefen.uni.edu.pe/Temas_interes/modhidro_2.pdf

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by Simulated Annealing. Science, 220(4598), 671-680. doi:10.1126/science.220.4598.671

Samora, I., Franca, M. J., Schleiss, A. J., & Ramos, H. M. (2016). Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resources Management, 30(4), 1533-1547. doi:10.1007/s11269-016-1238-5

Carravetta, A., del Giudice, G., Fecarotta, O., & Ramos, H. (2013). PAT Design Strategy for Energy Recovery in Water Distribution Networks by Electrical Regulation. Energies, 6(1), 411-424. doi:10.3390/en6010411

Methodology for Energy Efficiency Analysis in Pressurized Irrigation Networks, Practical Applicationhttps://riunet.upv.es/bitstream/handle/10251/84012/RESUMEN.pdf?sequence=3

Singh, P., & Nestmann, F. (2010). An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps. Experimental Thermal and Fluid Science, 34(2), 152-164. doi:10.1016/j.expthermflusci.2009.10.004

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2016). Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water, 8(6), 234. doi:10.3390/w8060234

Pérez-Sánchez, M., Sánchez-Romero, F. J., Ramos, H. M., & López-Jiménez, P. A. (2017). Calibrating a flow model in an irrigation network: Case study in Alicante, Spain. Spanish Journal of Agricultural Research, 15(1), e1202. doi:10.5424/sjar/2017151-10144

Pérez-Sánchez, M., Sánchez-Romero, F., Ramos, H., & López-Jiménez, P. (2017). Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water, 9(2), 97. doi:10.3390/w9020097

Fecarotta, O., Carravetta, A., Ramos, H. M., & Martino, R. (2016). An improved affinity model to enhance variable operating strategy for pumps used as turbines. Journal of Hydraulic Research, 54(3), 332-341. doi:10.1080/00221686.2016.1141804

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem