- -

Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties

Mostrar el registro completo del ítem

Ali, M.; Ahmed, I.; Ramirez Hoyos, P.; Nasir, S.; Cervera, J.; Niemeyer, CM.; Ensinger, W. (2016). Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties. Nanoscale. 8(16):8583-8590. https://doi.org/10.1039/c6nr00292g

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140929

Ficheros en el ítem

Metadatos del ítem

Título: Fluoride-induced modulation of ionic transport in asymmetric nanopores functionalized with "caged" fluorescein moieties
Autor: Ali, Mubarak Ahmed, Ishtiaq Ramirez Hoyos, Patricio Nasir, Saima Cervera, Javier Niemeyer, Christof M. Ensinger, Wolfgang
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] We demonstrate experimentally and theoretically a nanofluidic fluoride sensing device based on a single conical pore functionalized with "caged" fluorescein moieties. The nanopore functionalization is based on an ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Nanoscale. (issn: 2040-3364 )
DOI: 10.1039/c6nr00292g
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/c6nr00292g
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//MAT2015-65011-P/ES/NANOFLUIDICA DE POROS BIOMIMETICOS: NUEVAS APLICACIONES EN CONVERSION DE ENERGIA Y SENSORES%2FACTUADORES/
info:eu-repo/grantAgreement/GVA//PROMETEO%2FGV%2F0069
Agradecimientos:
M. A., S. N. and W. E. acknowledge the funding from the Hessen State Ministry of Higher Education, Research and the Arts, Germany, under the LOEWE project iNAPO. P. R. and J. C. acknowledge financial support by the Generalitat ...[+]
Tipo: Artículo

References

Gale, P. A. (2010). Anion receptor chemistry: highlights from 2008 and 2009. Chemical Society Reviews, 39(10), 3746. doi:10.1039/c001871f

Kim, H. N., Guo, Z., Zhu, W., Yoon, J., & Tian, H. (2011). Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 40(1), 79-93. doi:10.1039/c0cs00058b

Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chemical Reviews, 114(10), 5511-5571. doi:10.1021/cr400352m [+]
Gale, P. A. (2010). Anion receptor chemistry: highlights from 2008 and 2009. Chemical Society Reviews, 39(10), 3746. doi:10.1039/c001871f

Kim, H. N., Guo, Z., Zhu, W., Yoon, J., & Tian, H. (2011). Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem. Soc. Rev., 40(1), 79-93. doi:10.1039/c0cs00058b

Zhou, Y., Zhang, J. F., & Yoon, J. (2014). Fluorescence and Colorimetric Chemosensors for Fluoride-Ion Detection. Chemical Reviews, 114(10), 5511-5571. doi:10.1021/cr400352m

Beer, P. D., & Gale, P. A. (2001). Anion Recognition and Sensing: The State of the Art and Future Perspectives. Angewandte Chemie International Edition, 40(3), 486-516. doi:10.1002/1521-3773(20010202)40:3<486::aid-anie486>3.0.co;2-p

Anuradha, C. D., Kanno, S., & Hirano, S. (2000). Fluoride induces apoptosis by caspase-3 activation in human leukemia HL-60 cells. Archives of Toxicology, 74(4-5), 226-230. doi:10.1007/s002040000132

Refsnes, M., Schwarze, P. E., Holme, J. A., & Laêg, M. (2003). Fluoride-induced apoptosis in human epithelial lung cells (A549 cells): role of different G protein-linked signal systems. Human & Experimental Toxicology, 22(3), 111-123. doi:10.1191/0960327103ht322oa

Cheng, T.-J., Chen, T.-M., Chen, C.-H., & Lai, Y.-K. (1998). Induction of stress response and differential expression of 70 kDa stress proteins by sodium fluoride in hela and rat brain tumor 9l cells. Journal of Cellular Biochemistry, 69(2), 221-231. doi:10.1002/(sici)1097-4644(19980501)69:2<221::aid-jcb12>3.0.co;2-h

K. Kirk , in Biochemistry of the Elemental Halogens and Inorganic Halides, Springer, USA, 1991, vol. 9A+B, pp. 19–68

Farley, Wergedal, J., & Baylink, D. (1983). Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells. Science, 222(4621), 330-332. doi:10.1126/science.6623079

Cametti, M., & Rissanen, K. (2009). Recognition and sensing of fluoride anion. Chemical Communications, (20), 2809. doi:10.1039/b902069a

Orwoll, E. S. (1998). OSTEOPOROSIS IN MEN. Endocrinology and Metabolism Clinics of North America, 27(2), 349-367. doi:10.1016/s0889-8529(05)70009-8

Kim, S. Y., Park, J., Koh, M., Park, S. B., & Hong, J.-I. (2009). Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells. Chemical Communications, (31), 4735. doi:10.1039/b908745a

Singh, P. P., Barjatiya, M. k., Dhing, S., Bhatnagar, R., Kothari, S., & Dhar, V. (2001). Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations. Urological Research, 29(4), 238-244. doi:10.1007/s002400100192

Everett, E. T. (2010). Fluoride’s Effects on the Formation of Teeth and Bones, and the Influence of Genetics. Journal of Dental Research, 90(5), 552-560. doi:10.1177/0022034510384626

Zhao, H., Leamer, L. A., & Gabbaï, F. P. (2013). Anion capture and sensing with cationic boranes: on the synergy of Coulombic effects and onium ion-centred Lewis acidity. Dalton Transactions, 42(23), 8164. doi:10.1039/c3dt50491c

Sarkar, M., Yellampalli, R., Bhattacharya, B., Kanaparthi, R. K., & Samanta, A. (2007). Ratiometric fluorescence signalling of fluoride ions by an amidophthalimide derivative. Journal of Chemical Sciences, 119(2), 91-97. doi:10.1007/s12039-007-0015-7

B. Hille , Ionic channels of excitable membranes, Sinauer Associates Inc., Sunderland, MA, 3rd edn, 2001

Aguilella, V. M., Verdiá-Báguena, C., & Alcaraz, A. (2014). Lipid charge regulation of non-specific biological ion channels. Phys. Chem. Chem. Phys., 16(9), 3881-3893. doi:10.1039/c3cp54690j

Bayley, H., & Cremer, P. S. (2001). Stochastic sensors inspired by biology. Nature, 413(6852), 226-230. doi:10.1038/35093038

Healy, K. (2007). Nanopore-based single-molecule DNA analysis. Nanomedicine, 2(4), 459-481. doi:10.2217/17435889.2.4.459

Howorka, S., & Siwy, Z. (2009). Nanopore analytics: sensing of single molecules. Chemical Society Reviews, 38(8), 2360. doi:10.1039/b813796j

Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. (1996). Characterization of individual polynucleotide molecules using a membrane channel. Proceedings of the National Academy of Sciences, 93(24), 13770-13773. doi:10.1073/pnas.93.24.13770

Wang, H.-Y., Li, Y., Qin, L.-X., Heyman, A., Shoseyov, O., Willner, I., … Tian, H. (2013). Single-molecule DNA detection using a novel SP1 protein nanopore. Chemical Communications, 49(17), 1741. doi:10.1039/c3cc38939a

Dekker, C. (2007). Solid-state nanopores. Nature Nanotechnology, 2(4), 209-215. doi:10.1038/nnano.2007.27

Healy, K., Schiedt, B., & Morrison, A. P. (2007). Solid-state nanopore technologies for nanopore-based DNA analysis. Nanomedicine, 2(6), 875-897. doi:10.2217/17435889.2.6.875

Hou, X., Guo, W., & Jiang, L. (2011). Biomimetic smart nanopores and nanochannels. Chemical Society Reviews, 40(5), 2385. doi:10.1039/c0cs00053a

Hou, X., Zhang, H., & Jiang, L. (2012). Building Bio-Inspired Artificial Functional Nanochannels: From Symmetric to Asymmetric Modification. Angewandte Chemie International Edition, 51(22), 5296-5307. doi:10.1002/anie.201104904

Siwy, Z. S., & Howorka, S. (2010). Engineered voltage-responsive nanopores. Chem. Soc. Rev., 39(3), 1115-1132. doi:10.1039/b909105j

Wen, L., Tian, Y., Ma, J., Zhai, J., & Jiang, L. (2012). Construction of biomimetic smart nanochannels with polymer membranes and application in energy conversion systems. Physical Chemistry Chemical Physics, 14(12), 4027. doi:10.1039/c2cp23911f

Zhang, H., Tian, Y., & Jiang, L. (2013). From symmetric to asymmetric design of bio-inspired smart single nanochannels. Chemical Communications, 49(86), 10048. doi:10.1039/c3cc45526b

Ali, M., Nasir, S., Ahmed, I., Fruk, L., & Ensinger, W. (2013). Tuning nanopore surface polarity and rectification properties through enzymatic hydrolysis inside nanoconfined geometries. Chemical Communications, 49(78), 8770. doi:10.1039/c3cc45318a

Ali, M., Nasir, S., Ramirez, P., Ahmed, I., Nguyen, Q. H., Fruk, L., … Ensinger, W. (2011). Optical Gating of Photosensitive Synthetic Ion Channels. Advanced Functional Materials, 22(2), 390-396. doi:10.1002/adfm.201102146

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2012). Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano, 6(10), 9247-9257. doi:10.1021/nn303669g

Ali, M., Ramirez, P., Mafé, S., Neumann, R., & Ensinger, W. (2009). A pH-Tunable Nanofluidic Diode with a Broad Range of Rectifying Properties. ACS Nano, 3(3), 603-608. doi:10.1021/nn900039f

Ali, M., Ramirez, P., Nguyen, H. Q., Nasir, S., Cervera, J., Mafe, S., & Ensinger, W. (2012). Single Cigar-Shaped Nanopores Functionalized with Amphoteric Amino Acid Chains: Experimental and Theoretical Characterization. ACS Nano, 6(4), 3631-3640. doi:10.1021/nn3010119

Nasir, S., Ali, M., & Ensinger, W. (2012). Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes. Nanotechnology, 23(22), 225502. doi:10.1088/0957-4484/23/22/225502

Nasir, S., Ali, M., Ramirez, P., Gómez, V., Oschmann, B., Muench, F., … Ensinger, W. (2014). Fabrication of Single Cylindrical Au-Coated Nanopores with Non-Homogeneous Fixed Charge Distribution Exhibiting High Current Rectifications. ACS Applied Materials & Interfaces, 6(15), 12486-12494. doi:10.1021/am502419j

Nasir, S., Ramirez, P., Ali, M., Ahmed, I., Fruk, L., Mafe, S., & Ensinger, W. (2013). Nernst-Planck model of photo-triggered, pH–tunable ionic transport through nanopores functionalized with «caged» lysine chains. The Journal of Chemical Physics, 138(3), 034709. doi:10.1063/1.4775811

Siwy, Z., Heins, E., Harrell, C. C., Kohli, P., & Martin, C. R. (2004). Conical-Nanotube Ion-Current Rectifiers:  The Role of Surface Charge. Journal of the American Chemical Society, 126(35), 10850-10851. doi:10.1021/ja047675c

Zhang, H., Hou, X., Zeng, L., Yang, F., Li, L., Yan, D., … Jiang, L. (2013). Bioinspired Artificial Single Ion Pump. Journal of the American Chemical Society, 135(43), 16102-16110. doi:10.1021/ja4037669

Gyurcsányi, R. E. (2008). Chemically-modified nanopores for sensing. TrAC Trends in Analytical Chemistry, 27(7), 627-639. doi:10.1016/j.trac.2008.06.002

Wanunu, M., & Meller, A. (2007). Chemically Modified Solid-State Nanopores. Nano Letters, 7(6), 1580-1585. doi:10.1021/nl070462b

Ali, M., Nasir, S., Nguyen, Q. H., Sahoo, J. K., Tahir, M. N., Tremel, W., & Ensinger, W. (2011). Metal Ion Affinity-based Biomolecular Recognition and Conjugation inside Synthetic Polymer Nanopores Modified with Iron–Terpyridine Complexes. Journal of the American Chemical Society, 133(43), 17307-17314. doi:10.1021/ja205042t

Ali, M., Nasir, S., Ramirez, P., Cervera, J., Mafe, S., & Ensinger, W. (2013). Carbohydrate-Mediated Biomolecular Recognition and Gating of Synthetic Ion Channels. The Journal of Physical Chemistry C, 117(35), 18234-18242. doi:10.1021/jp4054555

Ali, M., Neumann, R., & Ensinger, W. (2010). Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nanoconfined Environment. ACS Nano, 4(12), 7267-7274. doi:10.1021/nn102119q

Ali, M., Ramirez, P., Tahir, M. N., Mafe, S., Siwy, Z., Neumann, R., … Ensinger, W. (2011). Biomolecular conjugation inside synthetic polymer nanopores via glycoprotein–lectin interactions. Nanoscale, 3(4), 1894. doi:10.1039/c1nr00003a

Ali, M., Schiedt, B., Neumann, R., & Ensinger, W. (2009). Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromolecular Bioscience, 10(1), 28-32. doi:10.1002/mabi.200900198

Ali, M., Tahir, M. N., Siwy, Z., Neumann, R., Tremel, W., & Ensinger, W. (2011). Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Analytical Chemistry, 83(5), 1673-1680. doi:10.1021/ac102795a

Han, C., Su, H., Sun, Z., Wen, L., Tian, D., Xu, K., … Jiang, L. (2013). Biomimetic Ion Nanochannels as a Highly Selective Sequential Sensor for Zinc Ions Followed by Phosphate Anions. Chemistry - A European Journal, 19(28), 9388-9395. doi:10.1002/chem.201300200

Hou, X., & Jiang, L. (2009). Learning from Nature: Building Bio-Inspired Smart Nanochannels. ACS Nano, 3(11), 3339-3342. doi:10.1021/nn901402b

Nguyen, Q. H., Ali, M., Neumann, R., & Ensinger, W. (2012). Saccharide/glycoprotein recognition inside synthetic ion channels modified with boronic acid. Sensors and Actuators B: Chemical, 162(1), 216-222. doi:10.1016/j.snb.2011.12.070

Siwy, Z., Trofin, L., Kohli, P., Baker, L. A., Trautmann, C., & Martin, C. R. (2005). Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 127(14), 5000-5001. doi:10.1021/ja043910f

Tian, Y., Hou, X., Wen, L., Guo, W., Song, Y., Sun, H., … Zhu, D. (2010). A biomimetic zinc activated ion channel. Chemical Communications, 46(10), 1682. doi:10.1039/b918006k

Vlassiouk, I., Kozel, T. R., & Siwy, Z. S. (2009). Biosensing with Nanofluidic Diodes. Journal of the American Chemical Society, 131(23), 8211-8220. doi:10.1021/ja901120f

Apel, P. Y., Korchev, Y. ., Siwy, Z., Spohr, R., & Yoshida, M. (2001). Diode-like single-ion track membrane prepared by electro-stopping. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 184(3), 337-346. doi:10.1016/s0168-583x(01)00722-4

Brglez, J., Ahmed, I., & Niemeyer, C. M. (2015). Photocleavable ligands for protein decoration of DNA nanostructures. Organic & Biomolecular Chemistry, 13(18), 5102-5104. doi:10.1039/c5ob00316d

Appiah-Ntiamoah, R., Chung, W.-J., & Kim, H. (2015). A highly selective SBA-15 supported fluorescent «turn-on» sensor for the fluoride anion. New Journal of Chemistry, 39(7), 5570-5579. doi:10.1039/c5nj00495k

Cervera, J., Ramirez, P., Mafe, S., & Stroeve, P. (2011). Asymmetric nanopore rectification for ion pumping, electrical power generation, and information processing applications. Electrochimica Acta, 56(12), 4504-4511. doi:10.1016/j.electacta.2011.02.056

Cervera, J., Schiedt, B., Neumann, R., Mafé, S., & Ramírez, P. (2006). Ionic conduction, rectification, and selectivity in single conical nanopores. The Journal of Chemical Physics, 124(10), 104706. doi:10.1063/1.2179797

Cervera, J., Schiedt, B., & Ramírez, P. (2005). A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhysics Letters (EPL), 71(1), 35-41. doi:10.1209/epl/i2005-10054-x

Ramírez, P., Apel, P. Y., Cervera, J., & Mafé, S. (2008). Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology, 19(31), 315707. doi:10.1088/0957-4484/19/31/315707

Ramírez, P., Gómez, V., Cervera, J., Schiedt, B., & Mafé, S. (2007). Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions. The Journal of Chemical Physics, 126(19), 194703. doi:10.1063/1.2735608

Siwy, Z., & Fuliński, A. (2004). A nanodevice for rectification and pumping ions. American Journal of Physics, 72(5), 567-574. doi:10.1119/1.1648328

Siwy, Z. S. (2006). Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Advanced Functional Materials, 16(6), 735-746. doi:10.1002/adfm.200500471

Chavali, R., Gunda, N. S. K., Naicker, S., & Mitra, S. K. (2015). Rapid detection of fluoride in potable water using a novel fluorogenic compound 7-O-tert-butyldiphenylsilyl-4-methylcoumarin. Analytical Chemistry Research, 6, 26-31. doi:10.1016/j.ancr.2015.10.003

Cao, J., Zhao, C., & Zhu, W. (2012). A near-infrared fluorescence chemodosimeter for fluoride via specific Si–O cleavage. Tetrahedron Letters, 53(16), 2107-2110. doi:10.1016/j.tetlet.2012.02.051

Hu, R., Feng, J., Hu, D., Wang, S., Li, S., Li, Y., & Yang, G. (2010). A Rapid Aqueous Fluoride Ion Sensor with Dual Output Modes. Angewandte Chemie International Edition, 49(29), 4915-4918. doi:10.1002/anie.201000790

Wei, G., Yin, J., Ma, X., Yu, S., Wei, D., & Du, Y. (2011). A carbohydrate modified fluoride ion sensor and its applications. Analytica Chimica Acta, 703(2), 219-225. doi:10.1016/j.aca.2011.07.009

Zanker, V., & Peter, W. (1958). Die prototropen Formen des Fluoresceins. Chemische Berichte, 91(3), 572-580. doi:10.1002/cber.19580910316

Leonhardt, H., Gordon, L., & Livingston, R. (1971). Acid-base equilibriums of fluorescein and 2’,7’-dichlorofluorescein in their ground and fluorescent states. The Journal of Physical Chemistry, 75(2), 245-249. doi:10.1021/j100672a011

Martin, M. M., & Lindqvist, L. (1975). The pH dependence of fluorescein fluorescence. Journal of Luminescence, 10(6), 381-390. doi:10.1016/0022-2313(75)90003-4

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem