- -

Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality

Mostrar el registro completo del ítem

Gugutkov, D.; Awaja, F.; Belemezova, K.; Keremidarska, M.; Krasteva, N.; Kyurkchiev, S.; Gallego-Ferrer, G.... (2017). Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality. Journal of Biomedical Materials Research Part A. 105(7):2065-2074. https://doi.org/10.1002/jbm.a.36065

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/140939

Ficheros en el ítem

Metadatos del ítem

Título: Osteogenic differentiation of mesenchymal stem cells using hybrid nanofibers with different configurations and dimensionality
Autor: Gugutkov, Dencho Awaja, Firas Belemezova, Kalina Keremidarska, Milena Krasteva, Natalia Kyurkchiev, Stanimir Gallego-Ferrer, Gloria Seker, Sukran Elcin, Ayse Eser Elçin, Yasar Murat Altankov, George
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] Novel, hybrid fibrinogen/polylactic acid (FBG/PLA) nanofibers with different configuration (random vs aligned) and dimensionality (2¿D vs 3¿D environment) were used to control the overall behavior and the osteogenic ...[+]
Palabras clave: Mesenchymal stem cells , Nanofibers , Osteogenic , Fibrinogen , Cell movements
Derechos de uso: Cerrado
Fuente:
Journal of Biomedical Materials Research Part A. (issn: 1549-3296 )
DOI: 10.1002/jbm.a.36065
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/jbm.a.36065
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/324386/EU/Network for Development of Soft Nanofibrous Construct for Cellular Therapy of Degenerative Skeletal Disorders/
info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-2-R/ES/REMODELACION POR MIOBLASTOS DE LA MATRIZ EXTRACELULAR EN LA INTERFAZ CELULA-BIOMATERIAL/
info:eu-repo/grantAgreement/TUBITAK//11S497/
info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-1-R/ES/SOPORTES CELULARES BIODEGRADABLES CARGADOS CON IONES BIOACTIVOS PARA REGENERACION MUSCULAR/
Agradecimientos:
Contract grant sponsor: CIBER-BBN Spain (project BIOSURFACES) Contract grant sponsor: European Commission through the FP7 Industry-Academia Partnerships and Pathways (IAPP) project FIBROGELNET; contract grant number: ...[+]
Tipo: Artículo

References

Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 40(5), 363-408. doi:10.1615/critrevbiomedeng.v40.i5.10

JOSE, M., THOMAS, V., JOHNSON, K., DEAN, D., & NYAIRO, E. (2009). Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(1), 305-315. doi:10.1016/j.actbio.2008.07.019

Cai, Y.-Z., Zhang, G.-R., Wang, L.-L., Jiang, Y.-Z., Ouyang, H.-W., & Zou, X.-H. (2012). Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Journal of Biomedical Materials Research Part A, 100A(5), 1187-1194. doi:10.1002/jbm.a.34063 [+]
Amini, A. R., Laurencin, C. T., & Nukavarapu, S. P. (2012). Bone Tissue Engineering: Recent Advances and Challenges. Critical Reviews in Biomedical Engineering, 40(5), 363-408. doi:10.1615/critrevbiomedeng.v40.i5.10

JOSE, M., THOMAS, V., JOHNSON, K., DEAN, D., & NYAIRO, E. (2009). Aligned PLGA/HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomaterialia, 5(1), 305-315. doi:10.1016/j.actbio.2008.07.019

Cai, Y.-Z., Zhang, G.-R., Wang, L.-L., Jiang, Y.-Z., Ouyang, H.-W., & Zou, X.-H. (2012). Novel biodegradable three-dimensional macroporous scaffold using aligned electrospun nanofibrous yarns for bone tissue engineering. Journal of Biomedical Materials Research Part A, 100A(5), 1187-1194. doi:10.1002/jbm.a.34063

Wang, X., Ding, B., & Li, B. (2013). Biomimetic electrospun nanofibrous structures for tissue engineering. Materials Today, 16(6), 229-241. doi:10.1016/j.mattod.2013.06.005

Vasita, R., & Katti, D. S. (2006). Nanofibers and their applications in tissue engineering. International Journal of Nanomedicine, 1(1), 15-30. doi:10.2147/nano.2006.1.1.15

Wade, R. J., & Burdick, J. A. (2012). Engineering ECM signals into biomaterials. Materials Today, 15(10), 454-459. doi:10.1016/s1369-7021(12)70197-9

Zhang, Y., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29(32), 4314-4322. doi:10.1016/j.biomaterials.2008.07.038

Jia, S., Liu, L., Pan, W., Meng, G., Duan, C., Zhang, L., … Liu, J. (2012). Oriented cartilage extracellular matrix-derived scaffold for cartilage tissue engineering. Journal of Bioscience and Bioengineering, 113(5), 647-653. doi:10.1016/j.jbiosc.2011.12.009

Klein, T. J., Malda, J., Sah, R. L., & Hutmacher, D. W. (2009). Tissue Engineering of Articular Cartilage with Biomimetic Zones. Tissue Engineering Part B: Reviews, 15(2), 143-157. doi:10.1089/ten.teb.2008.0563

Li, W.-J., Mauck, R. L., Cooper, J. A., Yuan, X., & Tuan, R. S. (2007). Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. Journal of Biomechanics, 40(8), 1686-1693. doi:10.1016/j.jbiomech.2006.09.004

Xu, C. (2004). Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials, 25(5), 877-886. doi:10.1016/s0142-9612(03)00593-3

Lee, C. H., Shin, H. J., Cho, I. H., Kang, Y.-M., Kim, I. A., Park, K.-D., & Shin, J.-W. (2005). Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials, 26(11), 1261-1270. doi:10.1016/j.biomaterials.2004.04.037

Yang, X., Chen, X., & Wang, H. (2009). Acceleration of Osteogenic Differentiation of Preosteoblastic Cells by Chitosan Containing Nanofibrous Scaffolds. Biomacromolecules, 10(10), 2772-2778. doi:10.1021/bm900623j

Zhang, Y., Yang, F., Liu, K., Shen, H., Zhu, Y., Zhang, W., … Zhou, G. (2012). The impact of PLGA scaffold orientation on in vitro cartilage regeneration. Biomaterials, 33(10), 2926-2935. doi:10.1016/j.biomaterials.2012.01.006

Dragoo, J. L., Samimi, B., Zhu, M., Hame, S. L., Thomas, B. J., Lieberman, J. R., … Benhaim, P. (2003). Tissue-engineered cartilage and bone using stem cells from human infrapatellar fat pads. The Journal of Bone and Joint Surgery. British volume, 85-B(5), 740-747. doi:10.1302/0301-620x.85b5.13587

Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., … Hedrick, M. H. (2001). Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Engineering, 7(2), 211-228. doi:10.1089/107632701300062859

Gugutkov, D., Gustavsson, J., Cantini, M., Salmeron-Sánchez, M., & Altankov, G. (2016). Electrospun fibrinogen-PLA nanofibres for vascular tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 11(10), 2774-2784. doi:10.1002/term.2172

Gugutkov, D., Gustavsson, J., Ginebra, M. P., & Altankov, G. (2013). Fibrinogen nanofibers for guiding endothelial cell behavior. Biomaterials Science, 1(10), 1065. doi:10.1039/c3bm60124b

Campillo-Fernández, A. J., Unger, R. E., Peters, K., Halstenberg, S., Santos, M., Sánchez, M. S., … Kirkpatrick, C. J. (2009). Analysis of the Biological Response of Endothelial and Fibroblast Cells Cultured on Synthetic Scaffolds with Various Hydrophilic/Hydrophobic Ratios: Influence of Fibronectin Adsorption and Conformation. Tissue Engineering Part A, 15(6), 1331-1341. doi:10.1089/ten.tea.2008.0146

Gugutkov, D., González-García, C., Altankov, G., & Salmerón-Sánchez, M. (2011). Fibrinogen organization at the cell-material interface directs endothelial cell behavior. Journal of Bioactive and Compatible Polymers, 26(4), 375-387. doi:10.1177/0883911511409020

Coelho, N. M., González-García, C., Salmerón-Sánchez, M., & Altankov, G. (2011). Arrangement of Type IV Collagen and Laminin on Substrates with Controlled Density of –OH Groups. Tissue Engineering Part A, 17(17-18), 2245-2257. doi:10.1089/ten.tea.2010.0713

Sancho-Tello, M., Forriol, F., Gastaldi, P., Ruiz-Saurí, A., Martín de Llano, J. J., Novella-Maestre, E., … Carda, C. (2015). Time Evolution ofin VivoArticular Cartilage Repair Induced by Bone Marrow Stimulation and Scaffold Implantation in Rabbits. The International Journal of Artificial Organs, 38(4), 210-223. doi:10.5301/ijao.5000404

Alió del Barrio, J. L., Chiesa, M., Gallego Ferrer, G., Garagorri, N., Briz, N., Fernandez-Delgado, J., … De Miguel, M. P. (2014). Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model. Journal of Biomedical Materials Research Part A, 103(3), 1106-1118. doi:10.1002/jbm.a.35249

Martínez‐Ramos, C., Vallés‐Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273

MOSESSON, M. W. (2005). Fibrinogen and fibrin structure and functions. Journal of Thrombosis and Haemostasis, 3(8), 1894-1904. doi:10.1111/j.1538-7836.2005.01365.x

Lisman, T. (2005). Platelet aggregation: involvement of thrombin and fibrin(ogen). Frontiers in Bioscience, 10(1-3), 2504. doi:10.2741/1715

Weisel, J. W. (2005). Fibrinogen and Fibrin. Advances in Protein Chemistry, 247-299. doi:10.1016/s0065-3233(05)70008-5

Raghow, R. (1994). The role of extracellular matrix in postinflammatory wound healing and fibrosis. The FASEB Journal, 8(11), 823-831. doi:10.1096/fasebj.8.11.8070631

Chen, X., Fu, X., Shi, J., & Wang, H. (2013). Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomedicine: Nanotechnology, Biology and Medicine, 9(8), 1283-1292. doi:10.1016/j.nano.2013.04.013

Long, M. W. (2001). Osteogenesis and Bone-Marrow-Derived Cells. Blood Cells, Molecules, and Diseases, 27(3), 677-690. doi:10.1006/bcmd.2001.0431

He, C., Xu, X., Zhang, F., Cao, L., Feng, W., Wang, H., & Mo, X. (2011). Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. Journal of Biomedical Materials Research Part A, 97A(3), 339-347. doi:10.1002/jbm.a.33067

Fee, T., Surianarayanan, S., Downs, C., Zhou, Y., & Berry, J. (2016). Nanofiber Alignment Regulates NIH3T3 Cell Orientation and Cytoskeletal Gene Expression on Electrospun PCL+Gelatin Nanofibers. PLOS ONE, 11(5), e0154806. doi:10.1371/journal.pone.0154806

Forget, J., Awaja, F., Gugutkov, D., Gustavsson, J., Gallego Ferrer, G., Coelho-Sampaio, T., … Altankov, G. (2016). Differentiation of Human Mesenchymal Stem Cells Toward Quality Cartilage Using Fibrinogen-Based Nanofibers. Macromolecular Bioscience, 16(9), 1348-1359. doi:10.1002/mabi.201600080

Shapiro, F. (2008). Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials, 15, 53-76. doi:10.22203/ecm.v015a05

Jones, S. J., Boyde, A., & Pawley, J. B. (1975). Osteoblasts and collagen orientation. Cell and Tissue Research, 159(1). doi:10.1007/bf00231996

Ng, C. P. (2005). Interstitial fluid flow induces myofibroblast differentiation and collagen alignment in vitro. Journal of Cell Science, 118(20), 4731-4739. doi:10.1242/jcs.02605

Ito, A., Takizawa, Y., Honda, H., Hata, K., Kagami, H., Ueda, M., & Kobayashi, T. (2004). Tissue Engineering Using Magnetite Nanoparticles and Magnetic Force: Heterotypic Layers of Cocultured Hepatocytes and Endothelial Cells. Tissue Engineering, 10(5-6), 833-840. doi:10.1089/1076327041348301

Radisic, M., Park, H., Shing, H., Consi, T., Schoen, F. J., Langer, R., … Vunjak-Novakovic, G. (2004). Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proceedings of the National Academy of Sciences, 101(52), 18129-18134. doi:10.1073/pnas.0407817101

Xing, Q., Zhao, F., Chen, S., McNamara, J., DeCoster, M. A., & Lvov, Y. M. (2010). Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture. Acta Biomaterialia, 6(6), 2132-2139. doi:10.1016/j.actbio.2009.12.036

Aubin, H., Nichol, J. W., Hutson, C. B., Bae, H., Sieminski, A. L., Cropek, D. M., … Khademhosseini, A. (2010). Directed 3D cell alignment and elongation in microengineered hydrogels. Biomaterials, 31(27), 6941-6951. doi:10.1016/j.biomaterials.2010.05.056

Norman, J. J., & Desai, T. A. (2005). Control of Cellular Organization in Three Dimensions Using a Microfabricated Polydimethylsiloxane–Collagen Composite Tissue Scaffold. Tissue Engineering, 11(3-4), 378-386. doi:10.1089/ten.2005.11.378

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem