- -

"Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

"Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rodríguez Muñiz, Gemma María es_ES
dc.contributor.author Gomez Mendoza, Miguel es_ES
dc.contributor.author Nuin Pla, Neus Edurne es_ES
dc.contributor.author Andreu Ros, María Inmaculada es_ES
dc.contributor.author Marín García, Mª Luisa es_ES
dc.contributor.author Miranda Alonso, Miguel Ángel es_ES
dc.date.accessioned 2020-04-17T12:51:43Z
dc.date.available 2020-04-17T12:51:43Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1477-0520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140960
dc.description.abstract [EN] A photoactive bathymeter based on a carboxylic acid moiety covalently linked to a signalling methoxynaphthalene (MNP) fluorophore has been designed to prove the concept of "snorkelling" vs. "diving" in mixed micelles (MM). The carboxylic acid "floats" on the MM surface, while the MNP unit sinks deep in MM. The rate constants of MNP fluorescence quenching by iodide, which remains basically in water, consistently decrease with increasing spacer length, revealing different regions. This is associated with the distance MNP should "dive" in MM to achieve protection from aqueous reactants. Unequivocal proof of the exergonic photoinduced electron transfer was obtained from the UV-visible spectral signature of I-3(-) upon steady-state photolysis. The applicability of the bathymeter was examined upon testing a family of MNP derivatives. The obtained results were validated by comparison with different lipophilicity tests: (i) a modified version of the K-ow partition coefficient and (ii) the retention factor on thin layer chromatography. This concept could potentially be extended to test drugs or pharmacophores exhibiting any photoactive moiety. es_ES
dc.description.sponsorship Financial support from the Spanish Government (SEV-2016-0683), Red RETICS de Investigacion de Reacciones Adversas a Alergenos y Farmacos (RIRAAF), Instituto de Salud Carlos III (RD012/0013, RD16/0006/0030, FIS PI16/01877), VLC-Campus and the Generalitat Valenciana (Prometeo Program) is gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Organic & Biomolecular Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title "Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7ob02595e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISCIII//RD012%2F0013/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RD16%2F0006%2F0030/ES/Asma, Reacciones Adversas y Alérgicas (ARADYAL)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//PI16%2F01877/ES/Estrategia integrada de fotodiagnóstico combinando evaluación clínica, ensayos biológicos y estudios mecanísticos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Rodríguez Muñiz, GM.; Gomez Mendoza, M.; Nuin Pla, NE.; Andreu Ros, MI.; Marín García, ML.; Miranda Alonso, MÁ. (2017). "Snorkelling" vs. "diving" in mixed micelles probed by means of a molecular bathymeter. Organic & Biomolecular Chemistry. 15(48):10281-10288. https://doi.org/10.1039/c7ob02595e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7ob02595e es_ES
dc.description.upvformatpinicio 10281 es_ES
dc.description.upvformatpfin 10288 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 15 es_ES
dc.description.issue 48 es_ES
dc.relation.pasarela S\347419 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Porter, C. J. H., Trevaskis, N. L., & Charman, W. N. (2007). Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nature Reviews Drug Discovery, 6(3), 231-248. doi:10.1038/nrd2197 es_ES
dc.description.references Hammad, M. ., & Müller, B. . (1998). Increasing drug solubility by means of bile salt–phosphatidylcholine-based mixed micelles. European Journal of Pharmaceutics and Biopharmaceutics, 46(3), 361-367. doi:10.1016/s0939-6411(98)00037-x es_ES
dc.description.references Nagadome, S., Numata, O., Sugihara, G., Sasaki, Y., & Igimi, H. (1995). Solubilization and precipitation of cholesterol in aqueous solution of bile salts and their mixtures. Colloid & Polymer Science, 273(7), 675-680. doi:10.1007/bf00652260 es_ES
dc.description.references Hofmann, A. F. (1999). The Continuing Importance of Bile Acids in Liver and Intestinal Disease. Archives of Internal Medicine, 159(22), 2647. doi:10.1001/archinte.159.22.2647 es_ES
dc.description.references Ding, J., Sun, Y., Li, J., Wang, H., & Mao, S. (2017). Enhanced blood–brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider. Journal of Drug Targeting, 25(6), 532-540. doi:10.1080/1061186x.2017.1289541 es_ES
dc.description.references Lasic, D. D. (1992). Mixed micelles in drug delivery. Nature, 355(6357), 279-280. doi:10.1038/355279a0 es_ES
dc.description.references Cheng, L., Kamkaew, A., Sun, H., Jiang, D., Valdovinos, H. F., Gong, H., … Cai, W. (2016). Dual-Modality Positron Emission Tomography/Optical Image-Guided Photodynamic Cancer Therapy with Chlorin e6-Containing Nanomicelles. ACS Nano, 10(8), 7721-7730. doi:10.1021/acsnano.6b03074 es_ES
dc.description.references Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1-3), 3-25. doi:10.1016/s0169-409x(96)00423-1 es_ES
dc.description.references Beaumont, K., Schmid, E., & Smith, D. A. (2005). Oral delivery of G protein-coupled receptor modulators: An explanation for the observed class difference. Bioorganic & Medicinal Chemistry Letters, 15(16), 3658-3664. doi:10.1016/j.bmcl.2005.05.042 es_ES
dc.description.references Al-Abdul-Wahid, M. S., Neale, C., Pomès, R., & Prosser, R. S. (2009). A Solution NMR Approach to the Measurement of Amphiphile Immersion Depth and Orientation in Membrane Model Systems. Journal of the American Chemical Society, 131(18), 6452-6459. doi:10.1021/ja808964e es_ES
dc.description.references Afri, M., Frimer, A. A., & Cohen, Y. (2004). Active oxygen chemistry within the liposomal bilayer. Chemistry and Physics of Lipids, 131(1), 123-133. doi:10.1016/j.chemphyslip.2004.04.006 es_ES
dc.description.references Cohen, Y., Bodner, E., Richman, M., Afri, M., & Frimer, A. A. (2008). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 155(2), 98-113. doi:10.1016/j.chemphyslip.2008.07.004 es_ES
dc.description.references Cohen, Y., Afri, M., & Frimer, A. A. (2008). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 155(2), 114-119. doi:10.1016/j.chemphyslip.2008.07.007 es_ES
dc.description.references Afri, M., Alexenberg, C., Aped, P., Bodner, E., Cohen, S., Ejgenburg, M., … Frimer, A. A. (2014). NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Chemistry and Physics of Lipids, 184, 105-118. doi:10.1016/j.chemphyslip.2014.07.007 es_ES
dc.description.references Afri, M., Naqqash, M. E., & Frimer, A. A. (2011). Using fluorescence to locate intercalants within the lipid bilayer of liposomes, bioliposomes and erythrocyte ghosts. Chemistry and Physics of Lipids, 164(8), 759-765. doi:10.1016/j.chemphyslip.2011.09.002 es_ES
dc.description.references Bodner, E., Afri, M., & Frimer, A. A. (2010). Determining radical penetration into membranes using ESR splitting constants. Free Radical Biology and Medicine, 49(3), 427-436. doi:10.1016/j.freeradbiomed.2010.04.029 es_ES
dc.description.references Laguerre, M., López Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M.-C., Baréa, B., Weiss, J., … Villeneuve, P. (2009). Chain Length Affects Antioxidant Properties of Chlorogenate Esters in Emulsion: The Cutoff Theory Behind the Polar Paradox. Journal of Agricultural and Food Chemistry, 57(23), 11335-11342. doi:10.1021/jf9026266 es_ES
dc.description.references Laguerre, M., López Giraldo, L. J., Lecomte, J., Figueroa-Espinoza, M.-C., Baréa, B., Weiss, J., … Villeneuve, P. (2010). Relationship between Hydrophobicity and Antioxidant Ability of «Phenolipids» in Emulsion: A Parabolic Effect of the Chain Length of Rosmarinate Esters. Journal of Agricultural and Food Chemistry, 58(5), 2869-2876. doi:10.1021/jf904119v es_ES
dc.description.references Aliaga, C., Bravo-Moraga, F., Gonzalez-Nilo, D., Márquez, S., Lühr, S., Mena, G., & Rezende, M. C. (2016). Location of TEMPO derivatives in micelles: subtle effect of the probe orientation. Food Chemistry, 192, 395-401. doi:10.1016/j.foodchem.2015.07.036 es_ES
dc.description.references Aliaga, C., López de Arbina, A., & Rezende, M. C. (2016). «Cut-off» effect of antioxidants and/or probes of variable lipophilicity in microheterogeneous media. Food Chemistry, 206, 119-123. doi:10.1016/j.foodchem.2016.03.024 es_ES
dc.description.references Lopez de Arbina, A., Rezende, M. C., & Aliaga, C. (2017). Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Food Chemistry, 224, 342-346. doi:10.1016/j.foodchem.2016.12.058 es_ES
dc.description.references Agostinis, P., Berg, K., Cengel, K. A., Foster, T. H., Girotti, A. W., Gollnick, S. O., … Golab, J. (2011). Photodynamic therapy of cancer: An update. CA: A Cancer Journal for Clinicians, 61(4), 250-281. doi:10.3322/caac.20114 es_ES
dc.description.references Kamkaew, A., Lim, S. H., Lee, H. B., Kiew, L. V., Chung, L. Y., & Burgess, K. (2013). BODIPY dyes in photodynamic therapy. Chem. Soc. Rev., 42(1), 77-88. doi:10.1039/c2cs35216h es_ES
dc.description.references Yano, S., Hirohara, S., Obata, M., Hagiya, Y., Ogura, S., Ikeda, A., … Joh, T. (2011). Current states and future views in photodynamic therapy. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 12(1), 46-67. doi:10.1016/j.jphotochemrev.2011.06.001 es_ES
dc.description.references Dolmans, D. E. J. G. J., Fukumura, D., & Jain, R. K. (2003). Photodynamic therapy for cancer. Nature Reviews Cancer, 3(5), 380-387. doi:10.1038/nrc1071 es_ES
dc.description.references Bronshtein, I., Afri, M., Weitman, H., Frimer, A. A., Smith, K. M., & Ehrenberg, B. (2004). Porphyrin Depth in Lipid Bilayers as Determined by Iodide and Parallax Fluorescence Quenching Methods and Its Effect on Photosensitizing Efficiency. Biophysical Journal, 87(2), 1155-1164. doi:10.1529/biophysj.104.041434 es_ES
dc.description.references Lavi, A., Weitman, H., Holmes, R. T., Smith, K. M., & Ehrenberg, B. (2002). The Depth of Porphyrin in a Membrane and the Membrane’s Physical Properties Affect the Photosensitizing Efficiency. Biophysical Journal, 82(4), 2101-2110. doi:10.1016/s0006-3495(02)75557-4 es_ES
dc.description.references Chattopadhyay, A., & London, E. (1987). Parallax method for direct measurement of membrane penetration depth utilizing fluorescence quenching by spin-labeled phospholipids. Biochemistry, 26(1), 39-45. doi:10.1021/bi00375a006 es_ES
dc.description.references Nuin, E., Gómez-Mendoza, M., Andreu, I., Marin, M. L., & Miranda, M. A. (2012). New Photoactive Compounds To Probe Cholic Acid and Cholesterol inside Mixed Micelles. Organic Letters, 15(2), 298-301. doi:10.1021/ol303201y es_ES
dc.description.references Nuin, E., Gomez-Mendoza, M., Marin, M. L., Andreu, I., & Miranda, M. A. (2013). Influence of Drug Encapsulation within Mixed Micelles on the Excited State Dynamics and Accessibility to Ionic Quenchers. The Journal of Physical Chemistry B, 117(32), 9327-9332. doi:10.1021/jp404353u es_ES
dc.description.references Gomez-Mendoza, M., Nuin, E., Andreu, I., Marin, M. L., & Miranda, M. A. (2012). Photophysical Probes To Assess the Potential of Cholic Acid Aggregates as Drug Carriers. The Journal of Physical Chemistry B, 116(34), 10213-10218. doi:10.1021/jp304708y es_ES
dc.description.references Boschloo, G., & Hagfeldt, A. (2009). Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Accounts of Chemical Research, 42(11), 1819-1826. doi:10.1021/ar900138m es_ES
dc.description.references Gardner, J. M., Abrahamsson, M., Farnum, B. H., & Meyer, G. J. (2009). Visible Light Generation of Iodine Atoms and I−I Bonds: Sensitized I−Oxidation and I3−Photodissociation. Journal of the American Chemical Society, 131(44), 16206-16214. doi:10.1021/ja905021c es_ES
dc.description.references Sangster, J. (1989). Octanol‐Water Partition Coefficients of Simple Organic Compounds. Journal of Physical and Chemical Reference Data, 18(3), 1111-1229. doi:10.1063/1.555833 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem