- -

Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gaibor-Chavez, J. es_ES
dc.contributor.author Niño-Ruiz, Z. es_ES
dc.contributor.author Velázquez Martí, Borja es_ES
dc.contributor.author Lucio-Quintana, A. es_ES
dc.date.accessioned 2020-04-17T12:52:35Z
dc.date.available 2020-04-17T12:52:35Z
dc.date.issued 2018 es_ES
dc.identifier.issn 1877-2641 es_ES
dc.identifier.uri http://hdl.handle.net/10251/140986
dc.description.abstract [EN] For the economically depressed communities such as of those in the Canton Guaranda, Ecuador, to generate their own energy, from organic waste is very important because they are sometimes insulated and its gas and electricity supply is very deficient. The aim of this research, was to determine the feasibility of anaerobic co-digestion of wasted cabbage from the town's market in Guaranda, Ecuador, and livestock manure. Two variables were studied: temperature of the process and the percentage of cabbage and livestock manure. Biogas quantity and kinetic parameters were evaluated. Kinetic model were analyzed by minimizing the mean percentage of error between the observed values (measured experimentally) and predicted, using the Runge-Kutta of order 4 for solving the system of differential equations obtained from mass balance. The results showed that a 50-50% ratio cabbage-manure at 30 degrees C temperature gave the highest production of biogas achieved is (389.47cm(3)N/g initial SV) with a composition of 61% methane. The kinetic parameters found were mu(max)=0.1053day(-1); Ks=0.1153mg/l; Y=0.00246g VSS /g COD and K-dec=0.001005day(-1). es_ES
dc.description.sponsorship This research work has been carried out inside the cooperation framework funded by the ADSIDEO program of the Centro de Cooperacion al Desarrollo (CCD) of Universidad Politecnica de Valencia (Spain), in collaboration with the Centro de Estudios de la Biomasa (CEB), Universidad Estatal de Bolivar, Guaranda, Ecuador. The participation of Dr. Sergio Perez in this work was possible thanks to funding from the Ecuadorian Government by means of the PROMETEO program, led by the Secretaria Nacional de Educacion Superior, Ciencia y Tecnologia (SENESCYT). es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Waste and Biomass Valorization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biogas production es_ES
dc.subject Bacterial kinetics es_ES
dc.subject Co-digestion es_ES
dc.subject Cabbage es_ES
dc.subject Rural development es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12649-018-0228-7 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Gaibor-Chavez, J.; Niño-Ruiz, Z.; Velázquez Martí, B.; Lucio-Quintana, A. (2018). Viability of Biogas Production and Determination of Bacterial Kinetics in Anaerobic Co-digestion of Cabbage Waste and Livestock Manure. Waste and Biomass Valorization. 10(8):2129-2137. https://doi.org/10.1007/s12649-018-0228-7 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s12649-018-0228-7 es_ES
dc.description.upvformatpinicio 2129 es_ES
dc.description.upvformatpfin 2137 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\354820 es_ES
dc.contributor.funder Universidad Estatal de Bolívar es_ES
dc.contributor.funder Centro de Estudios de la Biomasa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.description.references Alkaya, E., Erguder, T.H., Demirer, G.N.: Effect of operational parameters on anaerobic co-digestion of dairy cattle manure and agricultural residues: a case study for the Kahramanmaras region in Turkey. Eng. Life Sci. 10, 552–559 (2010) es_ES
dc.description.references Angelidaki, I., Ahring, B.K.: Effects of free long fatty acids on thermophilic anaerobic digestion. Appl. Microbiol. Biotechnol. 37(6), 808–812 (1992) es_ES
dc.description.references Angelidaki, I., Ahring, B.K.: Effect of the clay mineral bentonite on ammonia inhibition of anaerobic thermophilic reactors degrading animal waste. Biodegradation. 3, 409–414 (1993) es_ES
dc.description.references Angelidaki, I., Ahring, B.K.: Anaerobic thermophilic digestion of manure at different ammonia loads: effect of temperature. Water Res. 28(3), 727–731 (1994) es_ES
dc.description.references APHA: Standard Methods for the Examination of Water and Wastewater. (2005). 21th edn. Washington, DC. American Public Health Association es_ES
dc.description.references Callaghan, F., Wase, J., Thayanithy, K., Forster, C.: Co-digestion of waste organic solids: batch studies. Biores. Technol. 67, 117–122 (1999) es_ES
dc.description.references Campos-Pozualo A.E.: Optimización de la digestión anaerobia de purines de cerdo mediante codigestión con residuos orgánicos de la industria agroalimentaria. Tesis de doctorado Universidad de Lleida. España (2001) es_ES
dc.description.references Cendales, E.: Producción de biogás mediante la codigestión anaeróbica de la mezcla de residuos cítricos y estiércol bovino para su utilización como fuente de energía renovable. Tesis de Magister en Ingeniería Mecánica. Universidad Nacional de Colombia. Bogotá, D.C., Colombia (2011) es_ES
dc.description.references Chapra, S., Canale, R.: Métodos Numéricos para Ingenieros, 5ta edición. Mc Graw Hill. pp. 1001 (2007) es_ES
dc.description.references Chynoweth, D.P., Wilkie, A.C., Owens, J.M.: (1998). Anaerobic processing of piggery wastes: a review. Proceedings of the ASAE Annual International Meeting, Orlando, Florida, USA es_ES
dc.description.references Corsetti, A., Perpetuini, G., Schirone, M., Tofalo, R., Suzzi, G.: Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front. Microbiol. 3, 248 (2012). https://doi.org/10.3389/fmicb.2012.00248 es_ES
dc.description.references Demirbas, A.H., Demirbas, I.: Importance of rural bioenergy for developing countries. Energy Convers. Manag. 48, 2386–2398 (2007) es_ES
dc.description.references Díaz, J.P., Reyes, I.P., Lundin, M., Horváth, I.S.: Bioresource technology. Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102, 10834–10840 (2011) es_ES
dc.description.references Fields, T.D., Lys, T.Z., Vincent, L.: Empirical research on accounting choice. J. Acc. Econ. 31(1–3), 255–307 (2001) es_ES
dc.description.references Gaibor-Chávez, S., Pérez-Pacheco, B., Velázquez-Martí, Z., Niño-Ruiz, V., Domínguez- Narváez: Dendrometric characterization of corn cane residues and 1 drying models in natural conditions in bolivar province (Ecuador). Renew. Energy. 86, 745–750 (2016) es_ES
dc.description.references Hashimoto, A.G.: Ammonia Inhibition of methanogenesis from cattle wastes. Agric. Wastes. 17, 241–261 (1986) es_ES
dc.description.references Hashimoto, A.G.: Effect of inoculum/substrate ratio on methane yield and production rate from straw. Biological Wastes. 28, 247–255 (1989) es_ES
dc.description.references Jih-Gaw, L., Ying-Shih, M., Allen, C., Cheng-Lung, H.: BMP test on chemically pretreated sludge. Biores. Technol. 68, 187–192 (1999) es_ES
dc.description.references Kaffle, G.P., Kim, S.H., y Sung, K.: Batch anaerobic co-digestion of Kimchi factory waste silage and swine manure under mesophilic conditions. Biores. Technol. 124, 489–494 (2012) es_ES
dc.description.references Kafle, G.K., Bhattarai, S., Kim, S.H., Chen, L.D.: Anaerobic digestion of Chinese cabbage waste silage with swine manure for biogas production: batch and continuous study. Environ. Technol. 35, 2708–2717 (2014)   es_ES
dc.description.references Khanal, S.: Anaerobic Biotechnology for Bioenergy Production—Principles and Applications. Blackwell Publishing, Iowa (2008) es_ES
dc.description.references Li, R., Chen, S., Li, X., Lar, J.S., et al.: Anaerobic codigestion of kitchen waste with cattle manure for biogas production. Energy Fuels. 23, 2225–2228 (2009) es_ES
dc.description.references Li, Y., Hua, D., Mu, H., Xu, H., Jin, F., Zhang, X.: Conversion of vegetable wastes to organic acids in leaching bed reactor: Performance and bacterial community analysis. J. Biosci. Bioenergy 124(2), 195–203 (2017) es_ES
dc.description.references Lomas, J.M., Urbano, C., Camarero, L.M.: Evaluation of a pilot scale downflow stationary fixed film anaerobic reactor treating piggery slurry in the mesophilic range. Biomass Bioenergy. 17, 49–58 (1999) es_ES
dc.description.references Masse, D.I., Talbot, G., Gilbert, Y.: On farm biogas production: a method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed Sci. Technol. 166, 436–445 (2011) es_ES
dc.description.references Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949) es_ES
dc.description.references Pagés Díaz, J., Pereda Reyes, I., Lundin, M., Sárvári Horváth, I.: Co-digestion of different waste mixtures from agro-industrial activities: Kinetic evaluation and synergetic effects. Bioresour. Technol. 102(23), 10834–10840 (2011) es_ES
dc.description.references Patra, J.K., Das, G., Paramithiotis, S., Shin, H.: Kimchi and other widely consumed traditional fermented foods of korea: A review. Front. Microbiol. 7, 1493 (2016) es_ES
dc.description.references Robbins, J.E., Gerhardt, S.A., Kappel, T.J.: Effects of total amonia on anaerobic digestion and an example of digestor performance from cattlemanure-protein mixture. Biol. Wastes. 27, 1–4 (1989) es_ES
dc.description.references Sakar, S., Yetilmezsoy, K., Kocak, E.: Anaerobic digestion technology in poultry and livestock waste treatment—a literature review. Waste Manag. Res. 27, 3–18 (2009) es_ES
dc.description.references Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., et al.: Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Biores. Technol. 144, 80–85 (2013) es_ES
dc.description.references Sonnand, J.R., Goudar, C.T.: (2004). Solution of the Haldane equation for substrate inhibition enzyme kinetics using the decomposition method. Math. Comput. Modelling 40(5–6), 573–582 es_ES
dc.description.references Steffen, R., Szolar, O., Braun, R.: Feedstocks for anaerobic digestion. Institute of Agrobiotechnology Tulin, University of Agricultural Sciences, Vienna (1998) es_ES
dc.description.references Strick, D.P, Domnanovich, A.M., Holubar, P.: A pH-based control of ammonia in biogas during anaerobic digestion of artificial pig manure and maize silage. Process Biochem. 41, 1235–1238 (2006) es_ES
dc.description.references Trejos, V.M., Fontalvo, A.J., Garcia, M.A.G.: Descripción matemática y análisis de estabilidad de procesos fermentativos. Dyna, vol. 76, núm. 158, junio, 2009, pp. 111–121 (2009) es_ES
dc.description.references Trujillo, D., Pérez, J.F., Cebreros, F.J.: Energy recovery from wastes. Anaerobic digestion of tomato plant mixed with rabbit wastes. Biores. Technol. 45, 81–83 (1993) es_ES
dc.description.references Wang, J.: Decentralized biogas technology of anaerobic digestion and farm ecosystem: opportunities and challenges. Front. Energy Res. 2, 10 (2014) es_ES
dc.description.references Zaher, U., Rongping, L., Jeppsson, U., Steyer, J., Chen, S.: GISCOD: general integrated solid waste co-digestion model. Water Res. 43, 2717–2727 (2009) es_ES
dc.description.references Zeeman, G., Wiegant, W.M., Koster-Treffers, M.E., Lettinga, G.: The influence of total ammonia concentration on the thermophilic digestion of cow manure. Agric. Wastes. 14, 19–35 (1985) es_ES
dc.description.references Zhang, L., Xu, C., Champagne, P.: Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51, 969–982 (2010) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem