- -

Mapping molecular binding by means of conformational dynamics measurements

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mapping molecular binding by means of conformational dynamics measurements

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Do Nascimento, Noelle M. es_ES
dc.contributor.author Juste-Dolz, Augusto Miguel es_ES
dc.contributor.author Bueno, Paulo Roberto es_ES
dc.contributor.author Monzó, Isidro S. es_ES
dc.contributor.author Tejero, R. es_ES
dc.contributor.author López-Paz, José Luis es_ES
dc.contributor.author Maquieira Catala, Angel es_ES
dc.contributor.author Morais, Sergi es_ES
dc.contributor.author Giménez-Romero, David es_ES
dc.date.accessioned 2020-04-29T07:04:01Z
dc.date.available 2020-04-29T07:04:01Z
dc.date.issued 2018-01 es_ES
dc.identifier.uri http://hdl.handle.net/10251/141937
dc.description.abstract [EN] Protein-protein interactions are key in virtually all biological processes. The study of these interactions and the interfaces that mediate them play a key role in the understanding of biological function. In particular, the observation of protein¿protein interactions in their dynamic environment is technically difficult. Here two surface analysis techniques, dual polarization interferometry and quartz crystal microbalance with dissipation monitoring, were paired for real-time mapping of the conformational dynamics of protein¿ protein interactions. Our approach monitors this dynamics in real time and in situ, which is a great advancement within technological platforms for drug discovery. Results agree with the experimental observations of the interaction between the TRIM21a protein and circulating autoantibodies via a bridging bipolar mechanism. This work provides a new chip-based method to monitor conformational dynamics of protein¿protein interactions, which is amenable to miniaturized high-throughput determination. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (GVA-PROMETEO/2014/040), the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund (CTQ2013-45875-R and CTQ2013-42914-R) is acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof RSC Advances es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Mapping molecular binding by means of conformational dynamics measurements es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7ra10617c es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-42914-R/ES/SERODIAGNOSTICO DE ENFERMEDADES AUTOINMUNES A TRAVES DE LA RED IDIOTIPO-ANTIIDIOTIPO. BASES Y APLICACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F040/ES/Estudio de estrategias fisico-químicas para el desarrollo de biosensores interferométricos en soportes interactivos de aplicación en clínica/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2013-45875-R/ES/BIOSENSADO EN SOPORTES INTERACTIVOS CON PROPIEDADES INTERFEROMETRICAS PARA APLICACIONES CLINICAS. DEMOSTRACION EN FARMACOGENETICA Y ALERGIAS MEDICAMENTOSAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Do Nascimento, NM.; Juste-Dolz, AM.; Bueno, PR.; Monzó, IS.; Tejero, R.; López-Paz, JL.; Maquieira Catala, A.... (2018). Mapping molecular binding by means of conformational dynamics measurements. RSC Advances. 8(2):867-876. https://doi.org/10.1039/c7ra10617c es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7ra10617c es_ES
dc.description.upvformatpinicio 867 es_ES
dc.description.upvformatpfin 876 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2046-2069 es_ES
dc.relation.pasarela S\350097 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Zhou, M., Li, Q., & Wang, R. (2016). Current Experimental Methods for Characterizing Protein-Protein Interactions. ChemMedChem, 11(8), 738-756. doi:10.1002/cmdc.201500495 es_ES
dc.description.references Skwarczynska, M., & Ottmann, C. (2015). Protein–protein interactions as drug targets. Future Medicinal Chemistry, 7(16), 2195-2219. doi:10.4155/fmc.15.138 es_ES
dc.description.references Milroy, L.-G., Grossmann, T. N., Hennig, S., Brunsveld, L., & Ottmann, C. (2014). Modulators of Protein–Protein Interactions. Chemical Reviews, 114(9), 4695-4748. doi:10.1021/cr400698c es_ES
dc.description.references Arkin, M. R., Tang, Y., & Wells, J. A. (2014). Small-Molecule Inhibitors of Protein-Protein Interactions: Progressing toward the Reality. Chemistry & Biology, 21(9), 1102-1114. doi:10.1016/j.chembiol.2014.09.001 es_ES
dc.description.references Talasaz, A. H., Nemat-Gorgani, M., Liu, Y., Stahl, P., Dutton, R. W., Ronaghi, M., & Davis, R. W. (2006). Prediction of protein orientation upon immobilization on biological and nonbiological surfaces. Proceedings of the National Academy of Sciences, 103(40), 14773-14778. doi:10.1073/pnas.0605841103 es_ES
dc.description.references Cui, H., Pashuck, E. T., Velichko, Y. S., Weigand, S. J., Cheetham, A. G., Newcomb, C. J., & Stupp, S. I. (2009). Spontaneous and X-ray-Triggered Crystallization at Long Range in Self-Assembling Filament Networks. Science, 327(5965), 555-559. doi:10.1126/science.1182340 es_ES
dc.description.references Ye, S., Li, H., Wei, F., Jasensky, J., Boughton, A. P., Yang, P., & Chen, Z. (2012). Observing a Model Ion Channel Gating Action in Model Cell Membranes in Real Time in Situ: Membrane Potential Change Induced Alamethicin Orientation Change. Journal of the American Chemical Society, 134(14), 6237-6243. doi:10.1021/ja2110784 es_ES
dc.description.references Chen, Y.-S., Hong, M.-Y., & Huang, G. S. (2012). A protein transistor made of an antibody molecule and two gold nanoparticles. Nature Nanotechnology, 7(3), 197-203. doi:10.1038/nnano.2012.7 es_ES
dc.description.references Zhang, G., Li, J., Cui, P., Wang, T., Jiang, J., & Prezhdo, O. V. (2017). Two-Dimensional Linear Dichroism Spectroscopy for Identifying Protein Orientation and Secondary Structure Composition. The Journal of Physical Chemistry Letters, 8(5), 1031-1037. doi:10.1021/acs.jpclett.7b00311 es_ES
dc.description.references Ding, B., Panahi, A., Ho, J.-J., Laaser, J. E., Brooks, C. L., Zanni, M. T., & Chen, Z. (2015). Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. Journal of the American Chemical Society, 137(32), 10190-10198. doi:10.1021/jacs.5b04024 es_ES
dc.description.references Consani, C., Aubock, G., van Mourik, F., & Chergui, M. (2013). Ultrafast Tryptophan-to-Heme Electron Transfer in Myoglobins Revealed by UV 2D Spectroscopy. Science, 339(6127), 1586-1589. doi:10.1126/science.1230758 es_ES
dc.description.references Callaway, E. (2015). The revolution will not be crystallized: a new method sweeps through structural biology. Nature, 525(7568), 172-174. doi:10.1038/525172a es_ES
dc.description.references Pirich, C. L., de Freitas, R. A., Torresi, R. M., Picheth, G. F., & Sierakowski, M. R. (2017). Piezoelectric immunochip coated with thin films of bacterial cellulose nanocrystals for dengue detection. Biosensors and Bioelectronics, 92, 47-53. doi:10.1016/j.bios.2017.01.068 es_ES
dc.description.references McCubbin, G. A., Praporski, S., Piantavigna, S., Knappe, D., Hoffmann, R., Bowie, J. H., … Martin, L. L. (2010). QCM-D fingerprinting of membrane-active peptides. European Biophysics Journal, 40(4), 437-446. doi:10.1007/s00249-010-0652-5 es_ES
dc.description.references Li, X., Song, S., Shuai, Q., Pei, Y., Aastrup, T., Pei, Y., & Pei, Z. (2015). Real-time and label-free analysis of binding thermodynamics of carbohydrate-protein interactions on unfixed cancer cell surfaces using a QCM biosensor. Scientific Reports, 5(1). doi:10.1038/srep14066 es_ES
dc.description.references Escorihuela, J., González-Martínez, M. Á., López-Paz, J. L., Puchades, R., Maquieira, Á., & Gimenez-Romero, D. (2014). Dual-Polarization Interferometry: A Novel Technique To Light up the Nanomolecular World. Chemical Reviews, 115(1), 265-294. doi:10.1021/cr5002063 es_ES
dc.description.references Mallery, D. L., McEwan, W. A., Bidgood, S. R., Towers, G. J., Johnson, C. M., & James, L. C. (2010). Antibodies mediate intracellular immunity through tripartite motif-containing 21 (TRIM21). Proceedings of the National Academy of Sciences, 107(46), 19985-19990. doi:10.1073/pnas.1014074107 es_ES
dc.description.references McEwan, W. A., Tam, J. C. H., Watkinson, R. E., Bidgood, S. R., Mallery, D. L., & James, L. C. (2013). Intracellular antibody-bound pathogens stimulate immune signaling via the Fc receptor TRIM21. Nature Immunology, 14(4), 327-336. doi:10.1038/ni.2548 es_ES
dc.description.references Keeble, A. H., Khan, Z., Forster, A., & James, L. C. (2008). TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proceedings of the National Academy of Sciences, 105(16), 6045-6050. doi:10.1073/pnas.0800159105 es_ES
dc.description.references Petri, M., Orbai, A.-M., Alarcón, G. S., Gordon, C., Merrill, J. T., Fortin, P. R., … Nived, O. (2012). Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis & Rheumatism, 64(8), 2677-2686. doi:10.1002/art.34473 es_ES
dc.description.references Wu, S., & Zhang, Y. (2007). LOMETS: A local meta-threading-server for protein structure prediction. Nucleic Acids Research, 35(10), 3375-3382. doi:10.1093/nar/gkm251 es_ES
dc.description.references Biasini, M., Bienert, S., Waterhouse, A., Arnold, K., Studer, G., Schmidt, T., … Schwede, T. (2014). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 42(W1), W252-W258. doi:10.1093/nar/gku340 es_ES
dc.description.references Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2008). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols, 4(1), 1-13. doi:10.1038/nprot.2008.197 es_ES
dc.description.references Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22(2), 195-201. doi:10.1093/bioinformatics/bti770 es_ES
dc.description.references Do Nascimento, N. M., Juste-Dolz, A., Grau-García, E., Román-Ivorra, J. A., Puchades, R., Maquieira, A., … Gimenez-Romero, D. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus. Biosensors and Bioelectronics, 90, 166-173. doi:10.1016/j.bios.2016.11.004 es_ES
dc.description.references Kuboshima, M., Shimada, H., Liu, T.-L., Nomura, F., Takiguchi, M., Hiwasa, T., & Ochiai, T. (2006). Presence of serum tripartite motif-containing 21 antibodies in patients with esophageal squamous cell carcinoma. Cancer Science, 97(5), 380-386. doi:10.1111/j.1349-7006.2006.00192.x es_ES
dc.description.references Sanchez, J. G., Okreglicka, K., Chandrasekaran, V., Welker, J. M., Sundquist, W. I., & Pornillos, O. (2014). The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proceedings of the National Academy of Sciences, 111(7), 2494-2499. doi:10.1073/pnas.1318962111 es_ES
dc.description.references Biris, N., Yang, Y., Taylor, A. B., Tomashevski, A., Guo, M., Hart, P. J., … Ivanov, D. N. (2012). Structure of the rhesus monkey TRIM5  PRYSPRY domain, the HIV capsid recognition module. Proceedings of the National Academy of Sciences, 109(33), 13278-13283. doi:10.1073/pnas.1203536109 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem