- -

Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cofelice, M. es_ES
dc.contributor.author Cuomo, F. es_ES
dc.contributor.author Chiralt, A. es_ES
dc.date.accessioned 2020-05-13T03:02:37Z
dc.date.available 2020-05-13T03:02:37Z
dc.date.issued 2019-09-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/142996
dc.description.abstract [EN] The necessity of producing innovative packaging systems has directed the attention of food industries towards the use of biodegradable polymers for developing new films able to protect foods and to extend their shelf-life, with lower environmental impact. In particular, edible films combining hydrophilic and hydrophobic ingredients could retard moisture loss, gas migration and ensure food integrity, reducing the necessity of using synthetic plastics. Alginate-based films obtained from emulsions of lemongrass essential oil (at 0.1% and 0.5%) in aqueous alginate solutions (1%), with Tween 80 as surfactant (0.3%), were obtained by casting and characterized as to microstructure and thermal behavior, as well as tensile, barrier and optical properties. Films were also crosslinked through spraying calcium chloride onto the film surface and the influence of oil emulsification and the crosslinking effect on the final film properties were evaluated. The film microstructure, analyzed through Field Emission Scanning Electron Microscopy (FESEM) revealed discontinuities in films containing essential oil associated with droplet flocculation and coalescence during drying, while calcium diffusion into the matrix was enhanced. The presence of essential oil reduced the film stiffness whereas calcium addition lowered the film¿s water solubility, increasing tensile strength and reducing the extensibility coherent with its crosslinking effect. es_ES
dc.description.sponsorship This research was funded by the Ministerio de Economia y Competitividad (MINECO) of Spain, through the project AGL2016-76699-R. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Colloids and Interfaces es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Alginate es_ES
dc.subject Calcium crosslinking es_ES
dc.subject Edible films es_ES
dc.subject Lemongrass essential oil es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/colloids3030058 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Cofelice, M.; Cuomo, F.; Chiralt, A. (2019). Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids and Interfaces. 3(3):1-15. https://doi.org/10.3390/colloids3030058 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/colloids3030058 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 3 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2504-5377 es_ES
dc.relation.pasarela S\410182 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Rossi, M., Passeri, D., Sinibaldi, A., Angjellari, M., Tamburri, E., Sorbo, A., … Dini, L. (2017). Nanotechnology for Food Packaging and Food Quality Assessment. Advances in Food and Nutrition Research, 149-204. doi:10.1016/bs.afnr.2017.01.002 es_ES
dc.description.references Shit, S. C., & Shah, P. M. (2014). Edible Polymers: Challenges and Opportunities. Journal of Polymers, 2014, 1-13. doi:10.1155/2014/427259 es_ES
dc.description.references Tavassoli-Kafrani, E., Shekarchizadeh, H., & Masoudpour-Behabadi, M. (2016). Development of edible films and coatings from alginates and carrageenans. Carbohydrate Polymers, 137, 360-374. doi:10.1016/j.carbpol.2015.10.074 es_ES
dc.description.references Cofelice, M., Cuomo, F., & Lopez, F. (2018). Rheological Properties of Alginate–Essential Oil Nanodispersions. Colloids and Interfaces, 2(4), 48. doi:10.3390/colloids2040048 es_ES
dc.description.references Cuomo, F., Lopez, F., Ceglie, A., Maiuro, L., Miguel, M. G., & Lindman, B. (2012). pH-responsive liposome-templated polyelectrolyte nanocapsules. Soft Matter, 8(16), 4415. doi:10.1039/c2sm07388a es_ES
dc.description.references Cuomo, F., Cofelice, M., & Lopez, F. (2019). Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion. Polymers, 11(2), 259. doi:10.3390/polym11020259 es_ES
dc.description.references Burt, S. (2004). Essential oils: their antibacterial properties and potential applications in foods—a review. International Journal of Food Microbiology, 94(3), 223-253. doi:10.1016/j.ijfoodmicro.2004.03.022 es_ES
dc.description.references Donsì, F., & Ferrari, G. (2016). Essential oil nanoemulsions as antimicrobial agents in food. Journal of Biotechnology, 233, 106-120. doi:10.1016/j.jbiotec.2016.07.005 es_ES
dc.description.references Liakos, I., Grumezescu, A., Holban, A., Florin, I., D’Autilia, F., Carzino, R., … Athanassiou, A. (2016). Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties. Pharmaceuticals, 9(3), 42. doi:10.3390/ph9030042 es_ES
dc.description.references Mbili, N. C., Opara, U. L., Lennox, C. L., & Vries, F. A. (2017). Citrus and lemongrass essential oils inhibit Botrytis cinerea on ‘Golden Delicious’, ‘Pink Lady’ and ‘Granny Smith’ apples. Journal of Plant Diseases and Protection, 124(5), 499-511. doi:10.1007/s41348-017-0121-9 es_ES
dc.description.references Azarakhsh, N., Osman, A., Ghazali, H. M., Tan, C. P., & Mohd Adzahan, N. (2014). Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biology and Technology, 88, 1-7. doi:10.1016/j.postharvbio.2013.09.004 es_ES
dc.description.references Cofelice, M., Lopez, F., & Cuomo, F. (2019). Quality Control of Fresh-Cut Apples after Coating Application. Foods, 8(6), 189. doi:10.3390/foods8060189 es_ES
dc.description.references Valencia-Sullca, C., Jiménez, M., Jiménez, A., Atarés, L., Vargas, M., & Chiralt, A. (2016). Influence of liposome encapsulated essential oils on properties of chitosan films. Polymer International, 65(8), 979-987. doi:10.1002/pi.5143 es_ES
dc.description.references McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x es_ES
dc.description.references Rao, J., & McClements, D. J. (2011). Formation of Flavor Oil Microemulsions, Nanoemulsions and Emulsions: Influence of Composition and Preparation Method. Journal of Agricultural and Food Chemistry, 59(9), 5026-5035. doi:10.1021/jf200094m es_ES
dc.description.references Atarés, L., & Chiralt, A. (2016). Essential oils as additives in biodegradable films and coatings for active food packaging. Trends in Food Science & Technology, 48, 51-62. doi:10.1016/j.tifs.2015.12.001 es_ES
dc.description.references Soares, J. P., Santos, J. E., Chierice, G. O., & Cavalheiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclética Química, 29(2), 57-64. doi:10.1590/s0100-46702004000200009 es_ES
dc.description.references Hadi Razavi, S., Hashem Hosseini, M., Mohammad Ali Mousavi, S., Ahmad Shahidi Yasaghi, S., & Ghorbani Hasansaraei, A. (2008). Improving Antibacterial Activity of Edible Films Based on Chitosan by Incorporating Thyme and Clove Essential Oils and EDTA. Journal of Applied Sciences, 8(16), 2895-2900. doi:10.3923/jas.2008.2895.2900 es_ES
dc.description.references Riquelme, N., Herrera, M. L., & Matiacevich, S. (2017). Active films based on alginate containing lemongrass essential oil encapsulated: Effect of process and storage conditions. Food and Bioproducts Processing, 104, 94-103. doi:10.1016/j.fbp.2017.05.005 es_ES
dc.description.references Sapper, M., Wilcaso, P., Santamarina, M. P., Roselló, J., & Chiralt, A. (2018). Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control, 92, 505-515. doi:10.1016/j.foodcont.2018.05.004 es_ES
dc.description.references Pavlath, A. E., Gossett, C., Camirand, W., & Robertson, G. H. (1999). Ionomeric Films of Alginic Acid. Journal of Food Science, 64(1), 61-63. doi:10.1111/j.1365-2621.1999.tb09861.x es_ES
dc.description.references Olivas, G. I., & Barbosa-Cánovas, G. V. (2008). Alginate–calcium films: Water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT - Food Science and Technology, 41(2), 359-366. doi:10.1016/j.lwt.2007.02.015 es_ES
dc.description.references Siracusa, V., Romani, S., Gigli, M., Mannozzi, C., Cecchini, J., Tylewicz, U., & Lotti, N. (2018). Characterization of Active Edible Films based on Citral Essential Oil, Alginate and Pectin. Materials, 11(10), 1980. doi:10.3390/ma11101980 es_ES
dc.description.references Liling, G., Di, Z., Jiachao, X., Xin, G., Xiaoting, F., & Qing, Z. (2016). Effects of ionic crosslinking on physical and mechanical properties of alginate mulching films. Carbohydrate Polymers, 136, 259-265. doi:10.1016/j.carbpol.2015.09.034 es_ES
dc.description.references Bonilla, J., Atarés, L., Vargas, M., & Chiralt, A. (2012). Effect of essential oils and homogenization conditions on properties of chitosan-based films. Food Hydrocolloids, 26(1), 9-16. doi:10.1016/j.foodhyd.2011.03.015 es_ES
dc.description.references Atarés, L., Pérez-Masiá, R., & Chiralt, A. (2011). The role of some antioxidants in the HPMC film properties and lipid protection in coated toasted almonds. Journal of Food Engineering, 104(4), 649-656. doi:10.1016/j.jfoodeng.2011.02.005 es_ES
dc.description.references Benavides, S., Villalobos-Carvajal, R., & Reyes, J. E. (2012). Physical, mechanical and antibacterial properties of alginate film: Effect of the crosslinking degree and oregano essential oil concentration. Journal of Food Engineering, 110(2), 232-239. doi:10.1016/j.jfoodeng.2011.05.023 es_ES
dc.description.references Pranoto, Y., Salokhe, V. M., & Rakshit, S. K. (2005). Physical and antibacte rial properties of alginate-based edible film incorporated with garlic oil. Food Research International, 38(3), 267-272. doi:10.1016/j.foodres.2004.04.009 es_ES
dc.description.references Costa, M. J., Marques, A. M., Pastrana, L. M., Teixeira, J. A., Sillankorva, S. M., & Cerqueira, M. A. (2018). Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 81, 442-448. doi:10.1016/j.foodhyd.2018.03.014 es_ES
dc.description.references Rhim, J.-W. (2004). Physical and mechanical properties of water resistant sodium alginate films. LWT - Food Science and Technology, 37(3), 323-330. doi:10.1016/j.lwt.2003.09.008 es_ES
dc.description.references Baek, S.-K., Kim, S., & Song, K. (2018). Characterization of Ecklonia cava Alginate Films Containing Cinnamon Essential Oils. International Journal of Molecular Sciences, 19(11), 3545. doi:10.3390/ijms19113545 es_ES
dc.description.references Abdollahi, M., Rezaei, M., & Farzi, G. (2012). A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering, 111(2), 343-350. doi:10.1016/j.jfoodeng.2012.02.012 es_ES
dc.description.references Tongnuanchan, P., Benjakul, S., & Prodpran, T. (2012). Properties and antioxidant activity of fish skin gelatin film incorporated with citrus essential oils. Food Chemistry, 134(3), 1571-1579. doi:10.1016/j.foodchem.2012.03.094 es_ES
dc.description.references Sánchez-González, L., González-Martínez, C., Chiralt, A., & Cháfer, M. (2010). Physical and antimicrobial properties of chitosan–tea tree essential oil composite films. Journal of Food Engineering, 98(4), 443-452. doi:10.1016/j.jfoodeng.2010.01.026 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem