- -

A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Martínez-Aquino, Carlos es_ES
dc.contributor.author Costero, Ana M. es_ES
dc.contributor.author Gil Grau, Salvador es_ES
dc.contributor.author Gaviña, Pablo es_ES
dc.date.accessioned 2020-05-15T03:02:57Z
dc.date.available 2020-05-15T03:02:57Z
dc.date.issued 2018-10 es_ES
dc.identifier.issn 1420-3049 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143316
dc.description.abstract [EN] A new environmentally-friendly, simple, selective and sensitive probe for detecting formaldehyde, based on naturally-occurring compounds, through either colorimetric or fluorescence changes, is described. The probe is able to detect formaldehyde in both solution and the gas phase with limits of detection of 0.24 mM and 0.7 ppm, respectively. The probe has been tested to study formaldehyde emission in contaminated real atmospheres. The supported probe is easy to use and to dispose, and is safe and suitable as an individual chemodosimeter. es_ES
dc.description.sponsorship This research was funded by the Spanish Government (projects MAT2015-64139-C4-4-R and AGL2015-70235-C2-2-R (MINECO/FEDER)) and the Generalitat Valenciana (project PROMETEOII/2014/047). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Molecules es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Formaldehyde es_ES
dc.subject Chromogenic sensor es_ES
dc.subject Gas phase es_ES
dc.subject Environmentally-friendly es_ES
dc.subject Pictet-Spengler es_ES
dc.title A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/molecules23102646 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-4-R/ES/QUIMIOSENSORES CROMOGENICOS Y FLUOROGENICOS PARA LA DETECCION DE NEUROTRASMISORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70235-C2-2-R/ES/DESARROLLO DE SISTEMAS HIBRIDOS CON OPTIMIZACION DEL ANCLADO DE BIOMOLECULAS Y DISEÑADOS CON PROPIEDADES DE ENCAPSULACION Y LIBERACION CONTROLADA MEJORADAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Martínez-Aquino, C.; Costero, AM.; Gil Grau, S.; Gaviña, P. (2018). A New Environmentally-Friendly Colorimetric Probe for Formaldehyde Gas Detection under Real Conditions. Molecules. 23(10). https://doi.org/10.3390/molecules23102646 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/molecules23102646 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 23 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 30332750 es_ES
dc.identifier.pmcid PMC6222883 es_ES
dc.relation.pasarela S\374118 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references https://mcgroup.co.uk/news/20140627/formaldehyde-production-exceed-52-mln-tonnes.html es_ES
dc.description.references Goris, J. A., Ang, S., & Navarro, C. (1998). Laboratory Safety: Minimizing the Toxic Effects of Formaldehyde. Laboratory Medicine, 29(1), 39-43. doi:10.1093/labmed/29.1.39 es_ES
dc.description.references Luo, W., Li, H., Zhang, Y., & Ang, C. Y. . (2001). Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 753(2), 253-257. doi:10.1016/s0378-4347(00)00552-1 es_ES
dc.description.references ROCHA, F., COELHO, L., LOPES, M., CARVALHO, L., FRACASSIDASILVA, J., DOLAGO, C., & GUTZ, I. (2008). Environmental formaldehyde analysis by active diffusive sampling with a bundle of polypropylene porous capillaries followed by capillary zone electrophoretic separation and contactless conductivity detection. Talanta, 76(2), 271-275. doi:10.1016/j.talanta.2008.02.037 es_ES
dc.description.references Korpan, Y. I., Gonchar, M. V., Sibirny, A. A., Martelet, C., El’skaya, A. V., Gibson, T. D., & Soldatkin, A. P. (2000). Development of highly selective and stable potentiometric sensors for formaldehyde determination. Biosensors and Bioelectronics, 15(1-2), 77-83. doi:10.1016/s0956-5663(00)00054-3 es_ES
dc.description.references Dong, S., & Dasgupta, P. K. (1986). Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environmental Science & Technology, 20(6), 637-640. doi:10.1021/es00148a016 es_ES
dc.description.references MITSUBAYASHI, K., NISHIO, G., SAWAI, M., SAITO, T., KUDO, H., SAITO, H., … MARTY, J. (2008). A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sensors and Actuators B: Chemical, 130(1), 32-37. doi:10.1016/j.snb.2007.07.086 es_ES
dc.description.references DEMKIV, O., SMUTOK, O., PARYZHAK, S., GAYDA, G., SULTANOV, Y., GUSCHIN, D., … GONCHAR, M. (2008). Reagentless amperometric formaldehyde-selective biosensors based on the recombinant yeast formaldehyde dehydrogenase. Talanta, 76(4), 837-846. doi:10.1016/j.talanta.2008.04.040 es_ES
dc.description.references Dennison, M. J., Hall, J. M., & Turner, A. P. F. (1996). Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. The Analyst, 121(12), 1769. doi:10.1039/an9962101769 es_ES
dc.description.references Wang, X., Si, Y., Mao, X., Li, Y., Yu, J., Wang, H., & Ding, B. (2013). Colorimetric sensor strips for formaldehyde assay utilizing fluoral-p decorated polyacrylonitrile nanofibrous membranes. The Analyst, 138(17), 5129. doi:10.1039/c3an00812f es_ES
dc.description.references Pinheiro, H. L. ., de Andrade, M. V., de Paula Pereira, P. A., & de Andrade, J. B. (2004). Spectrofluorimetric determination of formaldehyde in air after collection onto silica cartridges coated with Fluoral P. Microchemical Journal, 78(1), 15-20. doi:10.1016/j.microc.2004.02.017 es_ES
dc.description.references Antwi-Boampong, S., Peng, J. S., Carlan, J., & BelBruno, J. J. (2014). A Molecularly Imprinted Fluoral-P/Polyaniline Double Layer Sensor System for Selective Sensing of Formaldehyde. IEEE Sensors Journal, 14(5), 1490-1498. doi:10.1109/jsen.2014.2298872 es_ES
dc.description.references Xu, Z., Chen, J., Hu, L.-L., Tan, Y., Liu, S.-H., & Yin, J. (2017). Recent advances in formaldehyde-responsive fluorescent probes. Chinese Chemical Letters, 28(10), 1935-1942. doi:10.1016/j.cclet.2017.07.018 es_ES
dc.description.references Brewer, T. F., & Chang, C. J. (2015). An Aza-Cope Reactivity-Based Fluorescent Probe for Imaging Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10886-10889. doi:10.1021/jacs.5b05340 es_ES
dc.description.references Roth, A., Li, H., Anorma, C., & Chan, J. (2015). A Reaction-Based Fluorescent Probe for Imaging of Formaldehyde in Living Cells. Journal of the American Chemical Society, 137(34), 10890-10893. doi:10.1021/jacs.5b05339 es_ES
dc.description.references Li, J.-B., Wang, Q.-Q., Yuan, L., Wu, Y.-X., Hu, X.-X., Zhang, X.-B., & Tan, W. (2016). A two-photon fluorescent probe for bio-imaging of formaldehyde in living cells and tissues. The Analyst, 141(11), 3395-3402. doi:10.1039/c6an00473c es_ES
dc.description.references Tang, Y., Kong, X., Xu, A., Dong, B., & Lin, W. (2016). Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angewandte Chemie International Edition, 55(10), 3356-3359. doi:10.1002/anie.201510373 es_ES
dc.description.references He, L., Yang, X., Liu, Y., Kong, X., & Lin, W. (2016). A ratiometric fluorescent formaldehyde probe for bioimaging applications. Chemical Communications, 52(21), 4029-4032. doi:10.1039/c5cc09796g es_ES
dc.description.references Singha, S., Jun, Y. W., Bae, J., & Ahn, K. H. (2017). Ratiometric Imaging of Tissue by Two-Photon Microscopy: Observation of a High Level of Formaldehyde around Mouse Intestinal Crypts. Analytical Chemistry, 89(6), 3724-3731. doi:10.1021/acs.analchem.7b00044 es_ES
dc.description.references Song, H., Rajendiran, S., Kim, N., Jeong, S. K., Koo, E., Park, G., … Yoon, S. (2012). A tailor designed fluorescent ‘turn-on’ sensor of formaldehyde based on the BODIPY motif. Tetrahedron Letters, 53(37), 4913-4916. doi:10.1016/j.tetlet.2012.06.117 es_ES
dc.description.references Zhou, Y., Yan, J., Zhang, N., Li, D., Xiao, S., & Zheng, K. (2018). A ratiometric fluorescent probe for formaldehyde in aqueous solution, serum and air using aza-cope reaction. Sensors and Actuators B: Chemical, 258, 156-162. doi:10.1016/j.snb.2017.11.043 es_ES
dc.description.references Chaiendoo, K., Sooksin, S., Kulchat, S., Promarak, V., Tuntulani, T., & Ngeontae, W. (2018). A new formaldehyde sensor from silver nanoclusters modified Tollens’ reagent. Food Chemistry, 255, 41-48. doi:10.1016/j.foodchem.2018.02.030 es_ES
dc.description.references Fauzia, V., Nurlely, Imawan, C., Narayani, N. M. M. S., & Putri, A. E. (2018). A localized surface plasmon resonance enhanced dye-based biosensor for formaldehyde detection. Sensors and Actuators B: Chemical, 257, 1128-1133. doi:10.1016/j.snb.2017.11.031 es_ES
dc.description.references El Sayed, S., Pascual, L., Licchelli, M., Martínez-Máñez, R., Gil, S., Costero, A. M., & Sancenón, F. (2016). Chromogenic Detection of Aqueous Formaldehyde Using Functionalized Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(23), 14318-14322. doi:10.1021/acsami.6b03224 es_ES
dc.description.references Li, Z., Xue, Z., Wu, Z., Han, J., & Han, S. (2011). Chromo-fluorogenic detection of aldehydes with a rhodamine based sensor featuring an intramolecular deoxylactam. Organic & Biomolecular Chemistry, 9(22), 7652. doi:10.1039/c1ob06448g es_ES
dc.description.references Guglielmino, M., Allouch, A., Serra, C. A., & Calvé, S. L. (2017). Development of microfluidic analytical method for on-line gaseous Formaldehyde detection. Sensors and Actuators B: Chemical, 243, 963-970. doi:10.1016/j.snb.2016.11.093 es_ES
dc.description.references Xia, H., Hu, J., Tang, J., Xu, K., Hou, X., & Wu, P. (2016). A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air. Scientific Reports, 6(1). doi:10.1038/srep36794 es_ES
dc.description.references Feng, L., Musto, C. J., & Suslick, K. S. (2010). A Simple and Highly Sensitive Colorimetric Detection Method for Gaseous Formaldehyde. Journal of the American Chemical Society, 132(12), 4046-4047. doi:10.1021/ja910366p es_ES
dc.description.references Guo, X.-L., Chen, Y., Jiang, H.-L., Qiu, X.-B., & Yu, D.-L. (2018). Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors, 18(9), 3141. doi:10.3390/s18093141 es_ES
dc.description.references He, L., Yang, X., Ren, M., Kong, X., Liu, Y., & Lin, W. (2016). An ultra-fast illuminating fluorescent probe for monitoring formaldehyde in living cells, shiitake mushrooms, and indoors. Chemical Communications, 52(61), 9582-9585. doi:10.1039/c6cc04254f es_ES
dc.description.references Gangopadhyay, A., Maiti, K., Ali, S. S., Pramanik, A. K., Guria, U. N., Samanta, S. K., … Mahapatra, A. K. (2018). A PET based fluorescent chemosensor with real time application in monitoring formaldehyde emissions from plywood. Analytical Methods, 10(24), 2888-2894. doi:10.1039/c8ay00514a es_ES
dc.description.references Lin, Q., Fan, Y.-Q., Gong, G.-F., Mao, P.-P., Wang, J., Guan, X.-W., … Wei, T.-B. (2018). Ultrasensitive Detection of Formaldehyde in Gas and Solutions by a Catalyst Preplaced Sensor Based on a Pillar[5]arene Derivative. ACS Sustainable Chemistry & Engineering, 6(7), 8775-8781. doi:10.1021/acssuschemeng.8b01124 es_ES
dc.description.references Cox, E. D., & Cook, J. M. (1995). The Pictet-Spengler condensation: a new direction for an old reaction. Chemical Reviews, 95(6), 1797-1842. doi:10.1021/cr00038a004 es_ES
dc.description.references Jonsson, G., Launosalo, T., Salomaa, P., Walle, T., Sjöberg, B., Bunnenberg, E., … Records, R. (1966). Fluorescence Studies on Some 6,7-Substituted 3,4-Dihydroisoquinolines Formed from 3-Hydroxytyramine (Dopamine) and Formaldehyde. Acta Chemica Scandinavica, 20, 2755-2762. doi:10.3891/acta.chem.scand.20-2755 es_ES
dc.description.references BJÖRKLUND, A., EHINGER, B., & FALCK, B. (1968). A METHOD FOR DIFFERENTIATING DOPAMINE FROM NORADRENALINE IN TISSUE SECTIONS BY MICROSPECTROFLUOROMETRY. Journal of Histochemistry & Cytochemistry, 16(4), 263-270. doi:10.1177/16.4.263 es_ES
dc.description.references Stöckigt, J., Antonchick, A. P., Wu, F., & Waldmann, H. (2011). The Pictet-Spengler Reaction in Nature and in Organic Chemistry. Angewandte Chemie International Edition, 50(37), 8538-8564. doi:10.1002/anie.201008071 es_ES
dc.description.references Allou, L., El Maimouni, L., & Le Calvé, S. (2011). Henry’s law constant measurements for formaldehyde and benzaldehyde as a function of temperature and water composition. Atmospheric Environment, 45(17), 2991-2998. doi:10.1016/j.atmosenv.2010.05.044 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem