- -

Extensión del Rango de Operación con Conmutación Suave de un Convertidor CC-CC Bidireccional de Tres Puertos

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extensión del Rango de Operación con Conmutación Suave de un Convertidor CC-CC Bidireccional de Tres Puertos

Mostrar el registro completo del ítem

Piris Botalla, L.; Oggier, GG.; Airabella, AM.; García, GO. (2016). Extensión del Rango de Operación con Conmutación Suave de un Convertidor CC-CC Bidireccional de Tres Puertos. Revista Iberoamericana de Automática e Informática industrial. 13(1):127-134. https://doi.org/10.1016/j.riai.2015.04.007

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143586

Ficheros en el ítem

Metadatos del ítem

Título: Extensión del Rango de Operación con Conmutación Suave de un Convertidor CC-CC Bidireccional de Tres Puertos
Otro titulo: Extending the Soft-Switching Operating Range of a Bidirectional Three-Port DC-DC Converter
Autor: Piris Botalla, Laureano Oggier, Germán G. Airabella, Andrés M. García, Guillermo O.
Fecha difusión:
Resumen:
[EN] The behavior of a three-port bidirectional DC-DC converter (TPC) under soft-switching mode applied to hybrid electric systems is analyzed in this paper. The principle of power flow control and the operation under ...[+]


[ES] En este trabajo se analiza la operación con conmutación suave de un convertidor CC-CC bidireccional de tres puertos (CTP) para sistemas eléctricos híbridos. Se estudia el principio de control de flujo de energía y la ...[+]
Palabras clave: Power Electronics , Power Converters and Drives , Smart Grid , Electronic and Electrical Power Systems , Hybrid Vehicles , Electrónica de Potencia , Convertidores y Accionamientos Eléctricos , Sistemas Eléctricos y Electrónicos de Potencia , Vehículos Híbridos
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.04.007
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2015.04.007
Tipo: Artículo

References

Adib, E., & Farzanehfard, H. (2009). Soft switching bidirectional DC–DC converter for ultracapacitor–batteries interface. Energy Conversion and Management, 50(12), 2879-2884. doi:10.1016/j.enconman.2009.07.001

Anwer, N., Siddiqui, A. S., & Anees, A. S. (2013). A lossless switching technique for smart grid applications. International Journal of Electrical Power & Energy Systems, 49, 213-220. doi:10.1016/j.ijepes.2012.12.012

Bizon, N. (2012). Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles. Applied Energy, 96, 431-443. doi:10.1016/j.apenergy.2012.02.075 [+]
Adib, E., & Farzanehfard, H. (2009). Soft switching bidirectional DC–DC converter for ultracapacitor–batteries interface. Energy Conversion and Management, 50(12), 2879-2884. doi:10.1016/j.enconman.2009.07.001

Anwer, N., Siddiqui, A. S., & Anees, A. S. (2013). A lossless switching technique for smart grid applications. International Journal of Electrical Power & Energy Systems, 49, 213-220. doi:10.1016/j.ijepes.2012.12.012

Bizon, N. (2012). Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles. Applied Energy, 96, 431-443. doi:10.1016/j.apenergy.2012.02.075

De Doncker, R. W. A. A., Divan, D. M., & Kheraluwala, M. H. (1991). A three-phase soft-switched high-power-density DC/DC converter for high-power applications. IEEE Transactions on Industry Applications, 27(1), 63-73. doi:10.1109/28.67533

Duarte, J. L., Hendrix, M., & Simoes, M. G. (2007). Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems. IEEE Transactions on Power Electronics, 22(2), 480-487. doi:10.1109/tpel.2006.889928

Dursun, E., & Kilic, O. (2012). Comparative evaluation of different power management strategies of a stand-alone PV/Wind/PEMFC hybrid power system. International Journal of Electrical Power & Energy Systems, 34(1), 81-89. doi:10.1016/j.ijepes.2011.08.025

Etxeberria, A., Vechiu, I., Camblong, H., & Vinassa, J.-M. (2012). Comparison of three topologies and controls of a hybrid energy storage system for microgrids. Energy Conversion and Management, 54(1), 113-121. doi:10.1016/j.enconman.2011.10.012

Farzanehfard, H., Beyragh, D. S., & Adib, E. (2008). A bidirectional soft switched ultracapacitor interface circuit for hybrid electric vehicles. Energy Conversion and Management, 49(12), 3578-3584. doi:10.1016/j.enconman.2008.07.004

Hajizadeh, A., & Golkar, M. A. (2010). Control of hybrid fuel cell/energy storage distributed generation system against voltage sag. International Journal of Electrical Power & Energy Systems, 32(5), 488-497. doi:10.1016/j.ijepes.2009.09.015

Inoue, S., & Akagi, H. (2007). A Bidirectional DC–DC Converter for an Energy Storage System With Galvanic Isolation. IEEE Transactions on Power Electronics, 22(6), 2299-2306. doi:10.1109/tpel.2007.909248

Kheraluwala, M. N., Gascoigne, R. W., Divan, D. M., & Baumann, E. D. (1992). Performance characterization of a high-power dual active bridge DC-to-DC converter. IEEE Transactions on Industry Applications, 28(6), 1294-1301. doi:10.1109/28.175280

Kovacevic, G., Tenconi, A., & Bojoi, R. (2008). Advanced DC–DC converter for power conditioning in hydrogen fuel cell systems. International Journal of Hydrogen Energy, 33(12), 3215-3219. doi:10.1016/j.ijhydene.2008.03.058

Kumar, L., & Jain, S. (2013). A multiple source DC/DC converter topology. International Journal of Electrical Power & Energy Systems, 51, 278-291. doi:10.1016/j.ijepes.2013.02.020

Martinez Salamero, L., Cid-Pastor, A., El Aroudi, A., Giral, R., & Calvente, J. (2009). Modelado y Control de Convertidores Conmutados Continua-Continua: Una perspectiva Tutorial. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(4), 5-20. doi:10.1016/s1697-7912(09)70104-9

Oggier, G. G., GarcÍa, G. O., & Oliva, A. R. (2009). Switching Control Strategy to Minimize Dual Active Bridge Converter Losses. IEEE Transactions on Power Electronics, 24(7), 1826-1838. doi:10.1109/tpel.2009.2020902

Piris-Botalla, L., Oggier, G. G., Airabella, A. M., & García, G. O. (2014). Power losses evaluation of a bidirectional three-port DC–DC converter for hybrid electric system. International Journal of Electrical Power & Energy Systems, 58, 1-8. doi:10.1016/j.ijepes.2013.12.021

Silva-Ortigoza, R., Sira-Ramírez, H., & Hernández-Guzmán, V. M. (2008). Control por Modos Deslizantes y Planitud Diferencial de un Convertidor de CD/CD Boost: Resultados Experimentales. Revista Iberoamericana de Automática e Informática Industrial RIAI, 5(4), 77-82. doi:10.1016/s1697-7912(08)70180-8

Tan, X., Li, Q., & Wang, H. (2013). Advances and trends of energy storage technology in Microgrid. International Journal of Electrical Power & Energy Systems, 44(1), 179-191. doi:10.1016/j.ijepes.2012.07.015

Haimin Tao, Duarte, J. L., & Hendrix, M. A. M. (2008). Three-Port Triple-Half-Bridge Bidirectional Converter With Zero-Voltage Switching. IEEE Transactions on Power Electronics, 23(2), 782-792. doi:10.1109/tpel.2007.915023

Vural, B., Erdinc, O., & Uzunoglu, M. (2010). Parallel combination of FC and UC for vehicular power systems using a multi-input converter-based power interface. Energy Conversion and Management, 51(12), 2613-2622. doi:10.1016/j.enconman.2010.05.027

Wang, L., Wang, Z., & Li, H. (2012). Asymmetrical Duty Cycle Control and Decoupled Power Flow Design of a Three-port Bidirectional DC-DC Converter for Fuel Cell Vehicle Application. IEEE Transactions on Power Electronics, 27(2), 891-904. doi:10.1109/tpel.2011.2160405

Zhao, C., Round, S. D., & Kolar, J. W. (2008). An Isolated Three-Port Bidirectional DC-DC Converter With Decoupled Power Flow Management. IEEE Transactions on Power Electronics, 23(5), 2443-2453. doi:10.1109/tpel.2008.2002056

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem