- -

Performance model for two-tier mobile wireless networks with macrocells and small cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance model for two-tier mobile wireless networks with macrocells and small cells

Mostrar el registro completo del ítem

Casares-Giner, V.; Martínez Bauset, J.; Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks. 24(4):1327-1342. https://doi.org/10.1007/s11276-016-1407-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143783

Ficheros en el ítem

Metadatos del ítem

Título: Performance model for two-tier mobile wireless networks with macrocells and small cells
Autor: Casares-Giner, Vicente Martínez Bauset, Jorge Ge, Xiaohu
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] A new analytical model is proposed to evaluate the performance of two-tier cellular networks composed of macrocells (MCs) and small cells (SCs), where terminals roam across the service area. Calls being serviced by ...[+]
Palabras clave: Two-tier mobile wireless networks , Overflow and repacking , Performance evaluation , Blocking probability , Forced termination probability
Derechos de uso: Reserva de todos los derechos
Fuente:
Wireless Networks. (issn: 1022-0038 )
DOI: 10.1007/s11276-016-1407-8
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11276-016-1407-8
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/247083/EU/Security, Services, nEtworking and performance of next generation IP-based multimedia wireless Networks/
...[+]
info:eu-repo/grantAgreement/EC/FP7/247083/EU/Security, Services, nEtworking and performance of next generation IP-based multimedia wireless Networks/
info:eu-repo/grantAgreement/NSFC//61210002/
info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//2015XJGH011/
info:eu-repo/grantAgreement/China International Joint Research Center of Green Communications and Networking//2015B01008/
info:eu-repo/grantAgreement/MINECO//TEC2015-71932-REDT/ES/ELASTIC NETWORKS: NUEVOS PARADIGMAS DE REDES ELASTICAS PARA UN MUNDO RADICALMENTE BASADO EN CLOUD Y FOG COMPUTING/
info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/
[-]
Agradecimientos:
Authors would like to thank you the anonymous reviewers for the review comments provided to our work that have decisively contributed to improve the paper. Most of the contribution of V. Casares-Giner was done while visiting ...[+]
Tipo: Artículo

References

ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report.

NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report.

Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67. [+]
ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report.

NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report.

Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.

Yamamoto, T., & Konishi, S. (2013). Impact of small cell deployments on mobility performance in LTE-Advanced systems. In IEEE PIMRC workshops (pp. 189–193).

Balakrishnan, R., & Akyildiz, I. (2016). Local anchor schemes for seamless and low-cost handover in coordinated small cells. IEEE Transactions on Mobile Computing, 15(5), 1182–1196.

Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials, 15(1), 293–311.

Yassin, M., AboulHassan, M. A., Lahoud, S., Ibrahim, M., Mezher, D., Cousin, B., & Sourour, E. A. (2015). Survey of ICIC techniques in LTE networks under various mobile environment parameters. Wireless Networks, 1–16.

Andrews, M., & Zhang, L. (2015). Utility optimization in heterogeneous networks via CSMA-based algorithms. Wireless Networks, 1–14.

El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, 1–22.

Huang, Q., Huang, Y.-C., Ko, K.-T., & Iversen, V. B. (2011). Loss performance modeling for hierarchical heterogeneous wireless networks with speed-sensitive call admission control. IEEE Transactions on Vehicular Technology, 60(5), 2209–2223.

Bonald, T., & Roberts, J. W. (2003). Congestion at flow level and the impact of user behaviour. Computer Networks, 42, 521–536.

Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180.

Rappaport, S. S., & Hu, L.-R. (1994). Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proceedings of the IEEE, 82(9), 1383–1397.

Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319.

Song, W., Jiang, H., & Zhuang, W. (2007). Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 6(5), 1932–1952.

Ge, X., Martinez-Bauset, J., Gasares-Giner, V., Yang, B., Ye, J., & Chen, M. (2013). Modeling and performance analysis of different access schemes in two-tier wireless networks. In IEEE Globecom (pp. 4402–4407).

Tsai, H.-M., Pang, A.-C., Lin, Y.-C., & Lin, Y.-B. (2005). Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6), 719–728.

Maheshwari, K., & Kumar, A. (2000). Performance analysis of microcellization for supporting two mobility classes in cellular wireless networks. IEEE Transactions on Vehicular Technology, 49(2), 321–333.

Whiting, P., & McMillan, D. (1990). Modeling for repacking in cellular radio. In 7th UK Teletraffic Symposium, IEE, Durham.

Kelly, F. (1989). Fixed point models of loss networks. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(02), 204–218.

McMillan, D. (1991). Traffic modelling and analysis for cellular mobile networks. In A. Jensen & V. Iversen (Eds.), Proceedigs of ITC-13 (pp. 627–632). IAC. Copenhaguen: Elsevier Science.

Fu, H.-L., Lin, P., & Lin, Y.-B. (2012). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597.

Eklundh, B. (1986). Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Transactions on Communications, 37, 329–337.

Karlsson, J., & Eklundh, B. (1989). A cellular telephone system with load sharing—An enhancement of directed retry. IEEE Transactions on Communications, 37(5), 530–535.

Nelson, R. (1995). Probability, stochastic processes and queueing theory. New York: Springer.

Iversen, V.B. (Aug. 1987). The exact evaluation of multi-service loss systems with access control. In Proceedings of the Seventh Nordic Teletraffic Seminar (NTS-7) (Vol. 31, pp. 56–61) Lund, (Sweden).

Ross, K. W. (1995). Multiservice loss models for broadband telecommunication networks. New York: Springer.

Lin, Y.-B., & Mak, V. W. (1994). Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2), 165–190.

Karray, M.K. (2010). Evaluation of the blocking probability and the throughput in the uplink of wireless cellular networks. In IEEE ComNet (pp. 1–8).

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem