- -

Performance model for two-tier mobile wireless networks with macrocells and small cells

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Performance model for two-tier mobile wireless networks with macrocells and small cells

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casares-Giner, Vicente es_ES
dc.contributor.author Martínez Bauset, Jorge es_ES
dc.contributor.author Ge, Xiaohu es_ES
dc.date.accessioned 2020-05-20T03:01:36Z
dc.date.available 2020-05-20T03:01:36Z
dc.date.issued 2018-05 es_ES
dc.identifier.issn 1022-0038 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143783
dc.description.abstract [EN] A new analytical model is proposed to evaluate the performance of two-tier cellular networks composed of macrocells (MCs) and small cells (SCs), where terminals roam across the service area. Calls being serviced by MCs may retain their channel when entering a SC service area, if no free SC channels are available. Also, newly offered SC calls can overflow to the MC. However, in both situations channels may be repacked to vacate MC channels. The cardinality of the state space of the continuous-time Markov chain (CTMC) that models the system dynamics makes the exact system analysis unfeasible. We propose an approximation based on constructing an equivalent CTMC for which a product-form solution exist that can be obtained with very low computational complexity. We determine performance parameters such as the call blocking probabilities for the MC and SCs, the probability of forced termination, and the carried traffic. We validate the analytical model by simulation. Numerical results show that the proposed analytical model achieves very good precision in scenarios with diverse mobility rates and MCs and SCs loads, as well as when MCs overlay a large number of SCs. es_ES
dc.description.sponsorship Authors would like to thank you the anonymous reviewers for the review comments provided to our work that have decisively contributed to improve the paper. Most of the contribution of V. Casares-Giner was done while visiting the Huazhong University of Science and Technolgy (HUST), Whuhan, China. This visit was supported by the European Commission, 7FP, S2EuNet project. The authors from the Universitat Politecnica de Valencia are partially supported by the Ministry of Economy and Competitiveness of Spain under grant TIN2013-47272-C2-1-R and TEC2015-71932-REDT. The research of Xiaohu Ge was supported by the National Natural Science Foundation of China (NSFC) grant 61210002, the Fundamental Research Funds for the Central Universities grant 2015XJGH011, and China International Joint Research Center of Green Communications and Networking grant 2015B01008. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Wireless Networks es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Two-tier mobile wireless networks es_ES
dc.subject Overflow and repacking es_ES
dc.subject Performance evaluation es_ES
dc.subject Blocking probability es_ES
dc.subject Forced termination probability es_ES
dc.subject.classification INGENIERIA TELEMATICA es_ES
dc.title Performance model for two-tier mobile wireless networks with macrocells and small cells es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11276-016-1407-8 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/247083/EU/Security, Services, nEtworking and performance of next generation IP-based multimedia wireless Networks/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//61210002/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Fundamental Research Funds for the Central Universities//2015XJGH011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/China International Joint Research Center of Green Communications and Networking//2015B01008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-71932-REDT/ES/ELASTIC NETWORKS: NUEVOS PARADIGMAS DE REDES ELASTICAS PARA UN MUNDO RADICALMENTE BASADO EN CLOUD Y FOG COMPUTING/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2013-47272-C2-1-R/ES/PLATAFORMA DE SERVICIOS PARA CIUDADES INTELIGENTES CON REDES M2M DENSAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Casares-Giner, V.; Martínez Bauset, J.; Ge, X. (2018). Performance model for two-tier mobile wireless networks with macrocells and small cells. Wireless Networks. 24(4):1327-1342. https://doi.org/10.1007/s11276-016-1407-8 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s11276-016-1407-8 es_ES
dc.description.upvformatpinicio 1327 es_ES
dc.description.upvformatpfin 1342 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 24 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\361449 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder Fundamental Research Funds for the Central Universities es_ES
dc.contributor.funder China International Joint Research Center of Green Communications and Networking es_ES
dc.description.references ABIresearch. (2016). In-building mobile data traffic forecast. ABIreseach, Technical Report. es_ES
dc.description.references NGMN Alliance. (2015). Recommendations for small cell development and deployment. NGMN Alliance, Technical Report. es_ES
dc.description.references Chandrasekhar, V., Andrews, J., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67. es_ES
dc.description.references Yamamoto, T., & Konishi, S. (2013). Impact of small cell deployments on mobility performance in LTE-Advanced systems. In IEEE PIMRC workshops (pp. 189–193). es_ES
dc.description.references Balakrishnan, R., & Akyildiz, I. (2016). Local anchor schemes for seamless and low-cost handover in coordinated small cells. IEEE Transactions on Mobile Computing, 15(5), 1182–1196. es_ES
dc.description.references Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. IEEE Communications Surveys & Tutorials, 15(1), 293–311. es_ES
dc.description.references Yassin, M., AboulHassan, M. A., Lahoud, S., Ibrahim, M., Mezher, D., Cousin, B., & Sourour, E. A. (2015). Survey of ICIC techniques in LTE networks under various mobile environment parameters. Wireless Networks, 1–16. es_ES
dc.description.references Andrews, M., & Zhang, L. (2015). Utility optimization in heterogeneous networks via CSMA-based algorithms. Wireless Networks, 1–14. es_ES
dc.description.references El-atty, S. M. A., & Gharsseldien, Z. M. (2016). Performance analysis of an advanced heterogeneous mobile network architecture with multiple small cell layers. Wireless Networks, 1–22. es_ES
dc.description.references Huang, Q., Huang, Y.-C., Ko, K.-T., & Iversen, V. B. (2011). Loss performance modeling for hierarchical heterogeneous wireless networks with speed-sensitive call admission control. IEEE Transactions on Vehicular Technology, 60(5), 2209–2223. es_ES
dc.description.references Bonald, T., & Roberts, J. W. (2003). Congestion at flow level and the impact of user behaviour. Computer Networks, 42, 521–536. es_ES
dc.description.references Lee, Y. L., Chuah, T. C., Loo, J., & Vinel, A. (2014). Recent advances in radio resource management for heterogeneous LTE/LTE-A networks. IEEE Communications Surveys & Tutorials, 16(4), 2142–2180. es_ES
dc.description.references Rappaport, S. S., & Hu, L.-R. (1994). Microcellular communication systems with hierarchical macrocell overlays: Traffic performance models and analysis. Proceedings of the IEEE, 82(9), 1383–1397. es_ES
dc.description.references Ge, X., Han, T., Zhang, Y., Mao, G., Wang, C.-X., Zhang, J., et al. (2014). Spectrum and energy efficiency evaluation of two-tier femtocell networks with partially open channels. IEEE Transactions on Vehicular Technology, 63(3), 1306–1319. es_ES
dc.description.references Song, W., Jiang, H., & Zhuang, W. (2007). Performance analysis of the WLAN-first scheme in cellular/WLAN interworking. IEEE Transactions on Wireless Communications, 6(5), 1932–1952. es_ES
dc.description.references Ge, X., Martinez-Bauset, J., Gasares-Giner, V., Yang, B., Ye, J., & Chen, M. (2013). Modeling and performance analysis of different access schemes in two-tier wireless networks. In IEEE Globecom (pp. 4402–4407). es_ES
dc.description.references Tsai, H.-M., Pang, A.-C., Lin, Y.-C., & Lin, Y.-B. (2005). Repacking on demand for hierarchical cellular networks. Wireless Networks, 11(6), 719–728. es_ES
dc.description.references Maheshwari, K., & Kumar, A. (2000). Performance analysis of microcellization for supporting two mobility classes in cellular wireless networks. IEEE Transactions on Vehicular Technology, 49(2), 321–333. es_ES
dc.description.references Whiting, P., & McMillan, D. (1990). Modeling for repacking in cellular radio. In 7th UK Teletraffic Symposium, IEE, Durham. es_ES
dc.description.references Kelly, F. (1989). Fixed point models of loss networks. The Journal of the Australian Mathematical Society. Series B. Applied Mathematics, 31(02), 204–218. es_ES
dc.description.references McMillan, D. (1991). Traffic modelling and analysis for cellular mobile networks. In A. Jensen & V. Iversen (Eds.), Proceedigs of ITC-13 (pp. 627–632). IAC. Copenhaguen: Elsevier Science. es_ES
dc.description.references Fu, H.-L., Lin, P., & Lin, Y.-B. (2012). Reducing signaling overhead for femtocell/macrocell networks. IEEE Transactions on Mobile Computing, 12(8), 1587–1597. es_ES
dc.description.references Eklundh, B. (1986). Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Transactions on Communications, 37, 329–337. es_ES
dc.description.references Karlsson, J., & Eklundh, B. (1989). A cellular telephone system with load sharing—An enhancement of directed retry. IEEE Transactions on Communications, 37(5), 530–535. es_ES
dc.description.references Nelson, R. (1995). Probability, stochastic processes and queueing theory. New York: Springer. es_ES
dc.description.references Iversen, V.B. (Aug. 1987). The exact evaluation of multi-service loss systems with access control. In Proceedings of the Seventh Nordic Teletraffic Seminar (NTS-7) (Vol. 31, pp. 56–61) Lund, (Sweden). es_ES
dc.description.references Ross, K. W. (1995). Multiservice loss models for broadband telecommunication networks. New York: Springer. es_ES
dc.description.references Lin, Y.-B., & Mak, V. W. (1994). Eliminating the boundary effect of a large-scale personal communication service network simulation. ACM Transactions on Modeling and Computer Simulation (TOMACS), 4(2), 165–190. es_ES
dc.description.references Karray, M.K. (2010). Evaluation of the blocking probability and the throughput in the uplink of wireless cellular networks. In IEEE ComNet (pp. 1–8). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem