- -

Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gil, P. es_ES
dc.contributor.author Kisler, T. es_ES
dc.contributor.author García, G.J. es_ES
dc.contributor.author Jara, C.A. es_ES
dc.contributor.author Corrales, J.A. es_ES
dc.date.accessioned 2020-05-21T06:02:27Z
dc.date.available 2020-05-21T06:02:27Z
dc.date.issued 2013-10-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143900
dc.description.abstract [ES] La percepción de profundidad se hace imprescindible en muchas tareas de manipulación, control visual y navegación de robots. Las cámaras de tiempo de vuelo (ToF: Time of Flight) generan imágenes de rango que proporcionan medidas de profundidad en tiempo real. No obstante, el parámetro distancia que calculan estas cámaras es fuertemente dependiente del tiempo de integración que se configura en el sensor y de la frecuencia de modulación empleada por el sistema de iluminación que integran. En este artículo, se presenta una metodología para el ajuste adaptativo del tiempo de integración y un análisis experimental del comportamiento de una cámara ToF cuando se modifica la frecuencia de modulación. Este método ha sido probado con éxito en algoritmos de control visual con arquitectura ‘eye-in-hand’ donde el sistema sensorial está compuesto por una cámara ToF. Además, la misma metodología puede ser aplicada en otros escenarios de trabajo. es_ES
dc.description.abstract [EN] The depth perception is essential in many manipulation tasks, visual inspection and robot navigation. The cameras of Time of Flight (TOF) generate range images which provide depth measurements in real time. However, the distance parameter computed from these cameras is strongly dependent on the integration time set for the sensor and the frequency of modulation used by the integrated lighting system. In this paper, a methodology for automatic setting of integration time and an experimental analysis of ToF camera behavior adjusting its modulation frequency is presented. This method has been successfully tested on visual servoing algorithms with architecture ‘eye-in-hand’ in which the sensory system consists of a ToF camera, in addition this methodology can be applied to other workspaces and scenarios. es_ES
dc.description.sponsorship Este trabajo ha sido co-financiado por el Gobierno regional de la Generalitat Valenciana, Universidad de Alicante y CICYT través de los proyectos GV2012/102, GRE10-16 y DPI2012-32390. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Time of flight es_ES
dc.subject Calibration es_ES
dc.subject Range image es_ES
dc.subject Robotic perception es_ES
dc.subject 3d-cameras es_ES
dc.subject Tiempo de vuelo es_ES
dc.subject Calibración es_ES
dc.subject Imagen de rango es_ES
dc.subject Percepción robótica es_ES
dc.subject Cámaras 3D es_ES
dc.title Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación es_ES
dc.title.alternative ToF Camera calibration: an automatic setting of its integration time and an experimental analysis of its modulation frequency es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2013.08.002
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GV%2F2012%2F102/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UA//GRE10-16/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2012-32390/ES/MANIPULACION DIESTRA DE OBJETOS RIGIDOS Y ELASTICOS CON GUIADO MEDIANTE CONTROL VISUAL-TACTIL-FUERZA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gil, P.; Kisler, T.; García, G.; Jara, C.; Corrales, J. (2013). Calibración de cámaras de tiempo de vuelo: Ajuste adaptativo del tiempo de integración y análisis de la frecuencia de modulación. Revista Iberoamericana de Automática e Informática industrial. 10(4):453-464. https://doi.org/10.1016/j.riai.2013.08.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2013.08.002 es_ES
dc.description.upvformatpinicio 453 es_ES
dc.description.upvformatpfin 464 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9503 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Universidad de Alicante es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Bouguet, J.Y., 2000. Pyramidal implementation of affine Lucas Kanade feature tracker. Intel Corporation- Microprocessor Research Labs, OpenCV Library. es_ES
dc.description.references Chaumette, F., Hutchinson, S., 2006. Visual servo control. I. Basic approaches. IEEE Robotics and Automation Magazine 13, IEEE Press, pp. 82-90. es_ES
dc.description.references Chiabrando, F., Chiabrando, R., Piatti, D., Rianudo, F., 2009. Sensors for 3d imaging: metric evualuation an calibration of CCD/CMOS time-of-flight camera. Sensors 9(9), pp. 10080-10096. DOI: 10.3390/s91210080. es_ES
dc.description.references Distante, C., Diraco, G., Leone, A., 2010. Active range imaging dataset for indoor surveillance. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, vol. 2, pp.1-16. es_ES
dc.description.references Foix, S., Alenya, G., & Torras, C. (2011). Lock-in Time-of-Flight (ToF) Cameras: A Survey. IEEE Sensors Journal, 11(9), 1917-1926. doi:10.1109/jsen.2010.2101060 es_ES
dc.description.references Plaue, M. (2009). Theoretical and experimental error analysis of continuous-wave time-of-flight range cameras. Optical Engineering, 48(1), 013602. doi:10.1117/1.3070634 es_ES
dc.description.references Fuchs, S. Hirzinger, G., 2008. Extrinsic and depth calibration of ToF-cameras. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-6. DOI: 10.1109/CVPR.2008.4587828. es_ES
dc.description.references Garcia, F., Aouada D., Mirbach, B., Solignac T., Ottersten B., 2011. Real-time hybrod ToF multi-camera rig fusion system for depth map enhancement. In Proc. of Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPRW.2011.5981740. es_ES
dc.description.references Gil, P., Pomares, J., Torres, F., 2010. Analysis and adaptation of integration time in PMD camera for visual servoing. In Proc. of 20th International Conference on Pattern Recognition (ICPR), IEEE Press Society, pp. 311-315. DOI: 10.1109/ICPR.2010.85. es_ES
dc.description.references Herrera, D.C., Kannala, J., Heikkila, J., 2011. Accurate and practical calibration of a depth and color camera pair. In Proc. of 14th International Conference on Computer Analysis of Images and Patterns (CAIP), vol 2, Ed. Springer-Verlag Berlín, Heidelberg, pp. 437-445. es_ES
dc.description.references Hussman, S., Liepert, T., 2009. Three-dimensional tof robot vision system. IEEE Transactions on Instrumentation and Measurement 58(1), pp. 141-146. DOI: 10.1109/TIM.2008.928409. es_ES
dc.description.references Hussman, S., Edeler, T., 2010. Robot vision using 3d tof systems. En: Ales Ude, (Ed.), Robot Vision. Intech Press, pp. 293-306. es_ES
dc.description.references Kakiuchi, Y., Ueda, R., Kobayashi, K., Okada, K., Inaba, M., 2010. Working with movable obstacles using on-line environmet perception reconstruction using active sensing and color range sensor. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, pp. 1696-1701. DOI: 10.1109/IROS.2010.5650206. es_ES
dc.description.references Kim, Y.M., Chan, D., Theobalt, C., Thrun, S., 2008. Design and calibration of a multi-view ToF sensor fusion system. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1524-1530. DOI: 10.1109/CVPRW.2008.4563160. es_ES
dc.description.references Kisler, T., Gil, P., 2011. Detección y seguimiento de objetos sólidos con cámaras ToF. Actas de XXXII Jornadas de Automática (JA), CEA-IFAC Actas. Sevilla (Spain). es_ES
dc.description.references Khoshelham, K. 2011. Accuracy analysis of Kinect depth data. En: D.D., Lichti, A.F., Habbib, (Ed.). In Proc of ISPRS Journal of Photogrammetry and Remote Sensing-Workshop on Laser Scanning, vol. 38(5), pp. 29-31. es_ES
dc.description.references Kolb, A., Barth, E., Koch, E., Larse, R., 2010. Time-of-flight Cameras in Computer Graphics. Computer Graphics Forum, vol. 29(1), pp. 141-159. DOI: 10.1111/j.1467-8659.2009.01583.x. es_ES
dc.description.references Kuehnle, J.U., Xue, Z., Sotz, M., Zoellner, J.M., Verl, A., Dillmann, R., 2008. Grasping in depth maps of time-of-flight cameras. In Proc. of IEEE International Workshop on Robotic and Sensors Environments (ROSE). pp. 132-137. DOI: 10.1109/ROSE.2008.466914. es_ES
dc.description.references Lai, K., Liefeng Bo, Xiaofrng Ren, Fox, D., 2011. Spares distance learning for object recognition combining RGB and depth information. In Proc. of International Conference on Robotics and Automation (ICRA), IEEE Press Society, pp. 4007-4013. DOI: 10.1109/ICRA.2011.5980377. es_ES
dc.description.references Lichti, D., 2008. Self-calibration of a 3D range camera. In Proc of International Society for Photogrammetry and Remote Sensing 37(3), pp.1-6. es_ES
dc.description.references Lichti, D. Rouzaud, D., 2009. Surface-dependent 3d range camera self- calibration. En: A., Beraldin, G.S., Cheok, M., McCarthy, (Ed.), In Proc. of SPIE vol. 72390, pp. DOI: 10.1117/12.805509. es_ES
dc.description.references Lichti, D., Kim, C., 2011. A comparison of three geometric self-calibration methods for range cameras. Remote Sensing 11(3), pp. 1014-1028. DOI: 10.3390/rs3051014. es_ES
dc.description.references Lindner, M., Kolb, A., Ringbeck, T., 2008. New insights into the calibration of ToF-sensors. In Proc. of 22nd Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1603-1607. DOI: 10.1109/CVPRW.2008.4563172. es_ES
dc.description.references Lindner, M., Schiller, I., Kolb, A., & Koch, R. (2010). Time-of-Flight sensor calibration for accurate range sensing. Computer Vision and Image Understanding, 114(12), 1318-1328. doi:10.1016/j.cviu.2009.11.002 es_ES
dc.description.references May, S., Werner, B., Surmann, H., Pervölz, K., 2006. “3d time-of-flight cameras for mobile robotics. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press, 790-795, DOI: 10.1109/IROS.2006.281670. es_ES
dc.description.references May, S., Fuchs, S., Droeschel, D. Holz, D., Nüchter, A., 2009. Robust 3d-mapping with time-of-flight cameras. In Proc. of International Conference on Intelligent Robots and Systems (IROS), IEEE Press Society, pp 1673-1678. es_ES
dc.description.references May, S., Droeschel, D., Holz, D., Fuchs, S., Malis, E., Nüchter, A., Hertzberg, J., 2009. Three-dimensional mapping with time-of-light cameras. Journal of Field Robotics. Special Issue on Three-dimensional Mapping Part 2, 26(11-12), pp. 934-965. DOI: 10.1002/ROB.20321. es_ES
dc.description.references Mufti, F., & Mahony, R. (2011). Statistical analysis of signal measurement in time-of-flight cameras. ISPRS Journal of Photogrammetry and Remote Sensing, 66(5), 720-731. doi:10.1016/j.isprsjprs.2011.06.004 es_ES
dc.description.references Pattison, T., 2010. Quantification and description of distance measurement errors of a time-of-flight camera. M. Sc. Thesis. University of Stuttgart, Stuttgart (Germany). es_ES
dc.description.references Pomares, J., Gil, P., Torres, F., 2010. Visual control of robots using range images. Sensors 10(8), pp. 7303-7322. DOI: 10.3290/s100807303. es_ES
dc.description.references Rapp, H., Frank, M., Hamprecht, F.A., Jähne, B., 2008. A theoretical and experimental investigation of the systematic errors and statistical uncertainties of time-of-flight-cameras. International Journal of Intelligent Systems Technologies and Applications vol. 5(3-4), pp. 402-413. DOI: 10.1504/IJISTA.2008.021303. es_ES
dc.description.references Shahbazi, M., Homayouni, S., Saadatseresht, M., & Sattari, M. (2011). Range Camera Self-Calibration Based on Integrated Bundle Adjustment via Joint Setup with a 2D Digital Camera. Sensors, 11(9), 8721-8740. doi:10.3390/s110908721 es_ES
dc.description.references Schaller, C., 2011, Time-of-Flight-A new Modality for Radiotherapy, M. Sc. Thesis. University Erlangen-Nuremberg, Erlagen (Germany). es_ES
dc.description.references Schiller, I., Beder, C., Koch, R., 2008. Calibration of a PMD-camera using a planar calibration pattern together with a multi-camera setup. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol. 37, pp. 297-302. es_ES
dc.description.references Schwarz, L., Mateus, D., Castaneda, V., Navab, N., 2010. Manifold learning for ToF-based human body tracking and activity recognition. In Proc. of British Machine Vision Conference (BMVC), BMVA Press, pp.1-11. DOI: 10.5244/C.24.80. es_ES
dc.description.references Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A., Blake, A., 2011. Real-time human pose recognition in parts from single depth images. In Proc of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1297-1304. es_ES
dc.description.references Smisek, J., 2011. 3D Camera Calibration. MSc. Thesis. Czech Technnical Univesity, Prague (Czech). es_ES
dc.description.references Weyer, C.A., Bae, K.H., Lim, K., Lichti, D., 2008. Extensive metric performance evaluation of a 3D range camera. In Proc. of ISPRS Journal of Photogrammetry and Remote Sensing vol.37(5), pp.939-944. es_ES
dc.description.references Wiedemann M., Sauer M., Driewer F. Schilling K., 2008. Analysis and characterization of the PMD camera for aplication in mobile robots. M. J. Chung and P. Misra (Ed.). In Proc. of 17th World Congress of the International Federation of Automotic Control, IFAC Press, pp.13689-13694. es_ES
dc.description.references Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330-1334. doi:10.1109/34.888718 es_ES
dc.description.references Zhu, J., Wang, L., Yang, R., Davis, J., 2008. Fusion of time-of-flight depth and stereo for high accuracy depth maps. In Proc. of Computer Vision and Pattern Recognition (CVPR), IEEE Press Society, pp. 1-8. DOI: 10.1109/CVPR.2008.4587761. es_ES
dc.description.references Zhu, J., Yang, R., & Xiang, X. (2011). Eye contact in video conference via fusion of time-of-flight depth sensor and stereo. 3D Research, 2(3). doi:10.1007/3dres.03(2011)5 es_ES
dc.description.references Zinber, T., Schmidt, J., Niemann, H., 2003. A refined ICP algorithm for robust 3d correspondence estimation. In Proc. of Conference on Image Processing (ICIP), IEEE Press, pp. 695-698. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem