- -

Un Algoritmo basado en Grafos para la Detección Automática de la Luz Arterial en Imágenes Ultrasonográficas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Un Algoritmo basado en Grafos para la Detección Automática de la Luz Arterial en Imágenes Ultrasonográficas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Calderon, Felix es_ES
dc.contributor.author Tinoco Martínez, Sergio Rogelio es_ES
dc.contributor.author Carranza Madrigal, Jaime es_ES
dc.date.accessioned 2020-05-21T07:34:55Z
dc.date.available 2020-05-21T07:34:55Z
dc.date.issued 2013-10-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143909
dc.description.abstract [ES] Las enfermedades cardiovasculares se han convertido en la primera causa de fallecimientos en México y en el mundo. La medición de la íntima-media carotídea y del diámetro de la luz humeral en imágenes de ultrasonido, son la base de dos de las pruebas destacadas para el diagnóstico temprano de este tipo de enfermedades. En este trabajo se presenta una metodología completamente automática para la detección de la luz arterial en ultrasonografías, necesaria en las pruebas citadas; basada en grafos y detección de bordes. El grafo se crea con los puntos intermedios entre los bordes y, su árbol de expansión mínima, permite segmentar la luz arterial correcta, aplicando sobre las rutas internas del grafo un criterio de selección de longitud y otro de obscuridad. En 294 imágenes, se obtuvo un error promedio en la detección de la interfaz entre el lumen de la arteria humeral y la capa íntima de su pared cercana de 13.9 μm, con una desviación estándar de 12.3 μm; y, para la misma interfaz en la pared arterial lejana, de 15.4 μm, con una desviación estándar de 15.0 μm. La comparación del desempeño de nuestro algoritmo se realizó contra los resultados presentados en la literatura reciente para técnicas tanto automáticas como semi-automáticas en esta área, a las cuales supera en precisión. es_ES
dc.description.abstract [EN] Cardiovascular diseases have become the first cause of dead in Mexico and the whole world. Intima-media thickness and brachial lumen diameter measurement in ultrasound images are the basis of two early diagnostic tests for this kind of illnesses. In this paper a methodology for automatic arterial lumen detection using ultrasound images, which is based on a graph and edge detection, is presented. The graph is created with middle points between edges and, its minimum spanning tree, is used together with decision criteria based on darkness and length, for the correct arterial lumen segmentation. In 294 images, a mean error in position detection of brachial lumen-intima interface on the near wall of 13.9 μm, with a standard deviation of 12.3 μm, was found; and, for same interface on the arterial far wall, mean error was of 15.4 μm with a standard deviation of 15.0 μm. Performance comparison of our algorithm was made against results presented in recent literature for automatic and semi-automatic techniques in this area, to whom it outperformed in accuracy. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Detección automática es_ES
dc.subject Ultrasonografía es_ES
dc.subject Carótida es_ES
dc.subject Humeral es_ES
dc.subject Luz arterial es_ES
dc.subject Grafos es_ES
dc.subject Ajuste polinomial es_ES
dc.subject Automatic detection es_ES
dc.subject Ultrasonography es_ES
dc.subject Carotid es_ES
dc.subject Brachial es_ES
dc.subject Arterial lumen es_ES
dc.subject Graphs es_ES
dc.subject Polynomial fitting es_ES
dc.title Un Algoritmo basado en Grafos para la Detección Automática de la Luz Arterial en Imágenes Ultrasonográficas es_ES
dc.title.alternative A Graph-based Algorithm for Automatic Arterial Lumen Detection in Ultrasound Imaging es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2013.05.011
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Calderon, F.; Tinoco Martínez, SR.; Carranza Madrigal, J. (2013). Un Algoritmo basado en Grafos para la Detección Automática de la Luz Arterial en Imágenes Ultrasonográficas. Revista Iberoamericana de Automática e Informática industrial. 10(4):423-433. https://doi.org/10.1016/j.riai.2013.05.011 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2013.05.011 es_ES
dc.description.upvformatpinicio 423 es_ES
dc.description.upvformatpfin 433 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9500 es_ES
dc.description.references Amato, M., Montorsi, P., Ravani, A., Oldani, E., Galli, S., Ravagnani, P. M., … Baldassarre, D. (2007). Carotid intima-media thickness by B-mode ultrasound as surrogate of coronary atherosclerosis: correlation with quantitative coronary angiography and coronary intravascular ultrasound findings. European Heart Journal, 28(17), 2094-2101. doi:10.1093/eurheartj/ehm244 es_ES
dc.description.references Canny, J., November 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-8 (6), 679-698. es_ES
dc.description.references Celermajer, D. S., Sorensen, K. E., Bull, C., Robinson, J., & Deanfield, J. E. (1994). Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their interaction. Journal of the American College of Cardiology, 24(6), 1468-1474. doi:10.1016/0735-1097(94)90141-4 es_ES
dc.description.references Cheng, D., Schmidt-Trucksäss, A., Cheng, K., & Burkhardt, H. (2002). Using snakes to detect the intimal and adventitial layers of the common carotid artery wall in sonographic images. Computer Methods and Programs in Biomedicine, 67(1), 27-37. doi:10.1016/s0169-2607(00)00149-8 es_ES
dc.description.references Delsanto, S., Molinari, F., Giustetto, P., Liboni, W., Badalamenti, S., 2005. CULEX-Completely User-independent Layers EXtraction: ultrasonic carotid artery images segmentation. Proceedings of the 2005 IEEE Engineering in Medicine and Biology Society 27th Annual Conference 6, 6468-71. es_ES
dc.description.references Delsanto, S., Molinari, F., Giustetto, P., Liboni, W., Badalamenti, S., & Suri, J. S. (2007). Characterization of a Completely User-Independent Algorithm for Carotid Artery Segmentation in 2-D Ultrasound Images. IEEE Transactions on Instrumentation and Measurement, 56(4), 1265-1274. doi:10.1109/tim.2007.900433 es_ES
dc.description.references Delsanto, S., Molinari, F., Liboni, W., Giustetto, P., Badalamenti, S., Suri, J.S., 2006. User-independent plaque characterization and accurate IMT measurement of carotid artery wall using ultrasound. Proceedings of the 2006 IEEE Engineering in Medicine and Biology Society 28th Annual International Conference 1, 2404-7. es_ES
dc.description.references Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum Likelihood from Incomplete Data Via theEMAlgorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22. doi:10.1111/j.2517-6161.1977.tb01600.x es_ES
dc.description.references Destrempes, F., Meunier, J., Giroux, M.-F., Soulez, G., & Cloutier, G. (2009). Segmentation in Ultrasonic B-Mode Images of Healthy Carotid Arteries Using Mixtures of Nakagami Distributions and Stochastic Optimization. IEEE Transactions on Medical Imaging, 28(2), 215-229. doi:10.1109/tmi.2008.929098 es_ES
dc.description.references Faita, F., Gemignani, V., Bianchini, E., Giannarelli, C., Ghiadoni, L., & Demi, M. (2008). Real-time Measurement System for Evaluation of the Carotid Intima-Media Thickness With a Robust Edge Operator. Journal of Ultrasound in Medicine, 27(9), 1353-1361. doi:10.7863/jum.2008.27.9.1353 es_ES
dc.description.references Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus. Communications of the ACM, 24(6), 381-395. doi:10.1145/358669.358692 es_ES
dc.description.references FURBERG, C. D., BYINGTON, R. P., & CRAVEN, T. E. (1994). Lessons learned from clinical trials with ultrasound end-points. Journal of Internal Medicine, 236(5), 575-580. doi:10.1111/j.1365-2796.1994.tb00848.x es_ES
dc.description.references Garcia-Barreto, D., Garcia-Fernandez, R., Garcia-Perez-Velazco, J., Milian, A.C., Peix-Gonzalez, A., Enero–Febrero 2003. Diagnostico preclinico de la ateroesclerosis: Funcion endotelial. Revista cubana de medicina 42 (1), 58-63. es_ES
dc.description.references Golemati, S., Stoitsis, J., Balkizas, T., & Nikita, K. S. (2005). Comparison of B-mode, M-mode and Hough transform methods for measurement of arterial diastolic and systolic diameters. 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. doi:10.1109/iembs.2005.1616786 es_ES
dc.description.references Golemati, S., Stoitsis, J., Sifakis, E. G., Balkizas, T., & Nikita, K. S. (2007). Using the Hough Transform to Segment Ultrasound Images of Longitudinal and Transverse Sections of the Carotid Artery. Ultrasound in Medicine & Biology, 33(12), 1918-1932. doi:10.1016/j.ultrasmedbio.2007.05.021 es_ES
dc.description.references Golemati, S., Tegos, T. J., Sassano, A., Nikita, K. S., & Nicolaides, A. N. (2004). Echogenicity of B-mode Sonographic Images of the Carotid Artery. Journal of Ultrasound in Medicine, 23(5), 659-669. doi:10.7863/jum.2004.23.5.659 es_ES
dc.description.references Gutierrez, M. A., Pilon, P. E., Lage, S. G., Kopel, L., Carvalho, R. T., & Furuie, S. S. (s. f.). Automatic measurement of carotid diameter and wall thickness in ultrasound images. Computers in Cardiology. doi:10.1109/cic.2002.1166783 es_ES
dc.description.references Hough, P.V. C., 1962. Method and means for recognizing complex patterns. U. S. Patent No. 3069654. es_ES
dc.description.references ISO, 2006. Health informatics – Digital imaging and communication in medicine (DICOM) including workflow and data management. No. ISO 12052:2006. es_ES
dc.description.references Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321-331. doi:10.1007/bf00133570 es_ES
dc.description.references Lai, K. F., & Chin, R. T. (1995). Deformable contours: modeling and extraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(11), 1084-1090. doi:10.1109/34.473235 es_ES
dc.description.references Quan Liang, Wendelhag, I., Wikstrand, J., & Gustavsson, T. (2000). A multiscale dynamic programming procedure for boundary detection in ultrasonic artery images. IEEE Transactions on Medical Imaging, 19(2), 127-142. doi:10.1109/42.836372 es_ES
dc.description.references Liguori, C., Paolillo, A., & Pietrosanto, A. (2001). An automatic measurement system for the evaluation of carotid intima-media thickness. IEEE Transactions on Instrumentation and Measurement, 50(6), 1684-1691. doi:10.1109/19.982968 es_ES
dc.description.references Lobregt, S., & Viergever, M. A. (1995). A discrete dynamic contour model. IEEE Transactions on Medical Imaging, 14(1), 12-24. doi:10.1109/42.370398 es_ES
dc.description.references Loizou, C. P., Pattichis, C. S., Pantziaris, M., Tyllis, T., & Nicolaides, A. (2007). Snakes based segmentation of the common carotid artery intima media. Medical & Biological Engineering & Computing, 45(1), 35-49. doi:10.1007/s11517-006-0140-3 es_ES
dc.description.references Molinari, F., Delsanto, S., Giustetto, P., Liboni,W., Badalamenti, S., Suri, J. S., 2008. Advances in diagnostic and therapeutic ultrasound imaging. Artech House, Norwood, MA, Ch. User-independent plaque segmentation and accurate intima-media thickness measurement of carotid artery wall using ultrasound, pp. 111-140. es_ES
dc.description.references MOLINARI, F., LIBONI, W., GIUSTETTO, P., BADALAMENTI, S., & SURI, J. S. (2009). AUTOMATIC COMPUTER-BASED TRACINGS (ACT) IN LONGITUDINAL 2-D ULTRASOUND IMAGES USING DIFFERENT SCANNERS. Journal of Mechanics in Medicine and Biology, 09(04), 481-505. doi:10.1142/s0219519409003115 es_ES
dc.description.references Molinari, F., Zeng, G., Suri, J.S., 2010a. Atherosclerosis Disease Management. Springer, Ch. Techniques and challenges in intima–media thickness measurement for carotid ultrasound images: a review, pp. 281-324. es_ES
dc.description.references Molinari, F., Zeng, G., & Suri, J. S. (2010). An Integrated Approach to Computer-Based Automated Tracing and Its Validation for 200 Common Carotid Arterial Wall Ultrasound Images. Journal of Ultrasound in Medicine, 29(3), 399-418. doi:10.7863/jum.2010.29.3.399 es_ES
dc.description.references Organizacion Mundial de la Salud, Enero. 2011. Enfermedades cardiovasculares. http://www.who.int/mediacentre/factsheets/fs317/es/index.html. es_ES
dc.description.references Reid, D.B., Watson, C., Majumder, B., Irshad, K., 2012. Ultrasound and Carotid Bifurcation Atherosclerosis. Springer, Ch. Intravascular ultrasound: plaque characterization, pp. 551-562. es_ES
dc.description.references Ronfard, R. (1994). Region-based strategies for active contour models. International Journal of Computer Vision, 13(2), 229-251. doi:10.1007/bf01427153 es_ES
dc.description.references Schmidt, & Wendelhag. (1999). How can the variability in ultrasound measurement of intima‐media thickness be reduced? Studies of interobserver variability in carotid and femoral arteries. Clinical Physiology, 19(1), 45-55. doi:10.1046/j.1365-2281.1999.00145.x es_ES
dc.description.references Secretaría General del Consejo Nacional de Población, Abril 2010. Principales causas de mortalidad en méxico 1980-2007. ht*tp://www.conapo.gob.mx/publicaciones/mortalidad/Mortalidadxcausas\_80\_07.pdf, documento de trabajo para el XLIII periodo de sesiones de la Comision de Poblacion y Desarrollo “Salud, morbilidad, mortalidad y desarrollo”. es_ES
dc.description.references Shankar, P. M. (2003). Estimation of the Nakagami parameter from log-compressed ultrasonic backscattered envelopes (L). The Journal of the Acoustical Society of America, 114(1), 70-72. doi:10.1121/1.1581281 es_ES
dc.description.references Shankar, P. M., Dumane, V. A., George, T., Piccoli, C. W., Reid, J. M., Forsberg, F., & Goldberg, B. B. (2003). Classification of breast masses in ultrasonic B scans using Nakagami and K distributions. Physics in Medicine and Biology, 48(14), 2229-2240. doi:10.1088/0031-9155/48/14/313 es_ES
dc.description.references Stein, J. H., Korcarz, C. E., Mays, M. E., Douglas, P. S., Palta, M., Zhang, H., … Fan, L. (2005). A semiautomated ultrasound border detection program that facilitates clinical measurement of ultrasound carotid intima-media thickness. Journal of the American Society of Echocardiography, 18(3), 244-251. doi:10.1016/j.echo.2004.12.002 es_ES
dc.description.references Stoitsis, J., Golemati, S., Kendros, S., & Nikita, K. S. (2008). Automated detection of the carotid artery wall in B-mode ultrasound images using active contours initialized by the Hough transform. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2008.4649871 es_ES
dc.description.references Touboul, P.-J., Prati, P., Scarabin, P.-Y., Adrai, V., Thibout, E., & Ducimeti??re, P. (1992). Use of monitoring software to improve the measurement of carotid wall thickness by B-mode imaging. Journal of Hypertension, 10(Supplement 5), S37-S42. doi:10.1097/00004872-199207005-00006 es_ES
dc.description.references Wendelhag, I., Gustavsson, T., Suurküla, M., Berglund, G., & Wikstrand, J. (1991). Ultrasound measurement of wall thickness in the carotid artery: fundamental principles and description of a computerized analysing system. Clinical Physiology, 11(6), 565-577. doi:10.1111/j.1475-097x.1991.tb00676.x es_ES
dc.description.references Wendelhag, I., Liang, Q., Gustavsson, T., & Wikstrand, J. (1997). A New Automated Computerized Analyzing System Simplifies Readings and Reduces the Variability in Ultrasound Measurement of Intima-Media Thickness. Stroke, 28(11), 2195-2200. doi:10.1161/01.str.28.11.2195 es_ES
dc.description.references Wendelhag, I., Wiklund, O., & Wikstrand, J. (1992). Arterial wall thickness in familial hypercholesterolemia. Ultrasound measurement of intima-media thickness in the common carotid artery. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 12(1), 70-77. doi:10.1161/01.atv.12.1.70 es_ES
dc.description.references Wendelhag, I., Wiklund, O., & Wikstrand, J. (1996). On Quantifying Plaque Size and Intima-Media Thickness in Carotid and Femoral Arteries. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(7), 843-850. doi:10.1161/01.atv.16.7.843 es_ES
dc.description.references Chenyang Xu, & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359-369. doi:10.1109/83.661186 es_ES
dc.description.references Xu, C., Yezzi, A., Prince, J.L., 2001. A summary of geometric level set analogues for a general class of parametric active contour and surface models. In: Proceedings of the 1st. IEEE Workshop on Variational and Level Set Methods in Computer Vision. pp. 104-11. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem