- -

Phase stability and electronic structure of iridium metal at the megabar range

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Phase stability and electronic structure of iridium metal at the megabar range

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Monteseguro, V. es_ES
dc.contributor.author Sans-Tresserras, Juan Ángel es_ES
dc.contributor.author Cuartero, V. es_ES
dc.contributor.author Cova, F. es_ES
dc.contributor.author Abrikosov, I.A. es_ES
dc.contributor.author Olovsson, W. es_ES
dc.contributor.author Popescu, Catalin es_ES
dc.contributor.author Pascarelli, S. es_ES
dc.contributor.author Garbarino, G. es_ES
dc.contributor.author Jonsson, H.J.M. es_ES
dc.contributor.author Irifune, T. es_ES
dc.contributor.author ERRANDONEA, DANIEL es_ES
dc.date.accessioned 2020-05-22T03:02:26Z
dc.date.available 2020-05-22T03:02:26Z
dc.date.issued 2019-06-20 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144083
dc.description.abstract [EN] The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was characterized by an accurate determination of the pressure-volume equation of state, with a bulk modulus of 339(3) GPa and its derivative of 5.3(1). X-ray absorption spectroscopy, which probes the local structure and the empty density of electronic states above the Fermi level, was also utilized. The remarkable agreement observed between experimental and calculated spectra validates the reliability of theoretical predictions of the pressure dependence of the electronic structure of iridium in the studied interval of compressions. es_ES
dc.description.sponsorship The authors thank the financial support of the Spanish Ministry of Science, Innovation and Universities, the Spanish Research Agency (AEI), the European Fund for Regional Development (FEDER) under Grant No. MAT2016-75586-C4-1/2-P and the Generalitat Valenciana under Grant Prometeo/2018/123 (EFIMAT). V. M. acknowledges the Juan de la Cierva fellowship (FJCI-2016-27921) and J.A.S. acknowledges the Ramón y Cajal fellowship program (RYC-2015-17482) and Spanish Mineco Project FIS2017-83295-P. We acknowledge the European Synchrotron Radiation Facility for provision of official research beamtimes, the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No 2009 00971), Knut and Alice Wallenbergs Foundation Project Strong Field Physics and New States of Matter CoTXS (2014 2019). The interpretation of theoretical results was supported by the Ministry of Science and High Education of the Russian Federation in the framework of Increase Competitiveness Program of NUST MISIS (No. K2-2019-001) implemented by a governmental decree dated 16 March 2013, No 211. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Spectroscopy es_ES
dc.subject Pressures es_ES
dc.subject Exafs es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Phase stability and electronic structure of iridium metal at the megabar range es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-019-45401-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-2-P/ES/COMPUESTOS ABO3 Y A2X3 EN CONDICIONES EXTREMAS DE PRESION Y TEMPERATURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-75586-C4-1-P/ES/OXIDOS METALICOS BAJO CONDICIONES EXTREMAS: SINTESIS Y CARACTERIZACION DE MATERIALES EN VOLUMEN, NANOCRISTALES Y CAPAS DELGADAS CON APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//FJCI-2016-27921/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/VINNOVA//2009-00971/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Ministry of Education and Science of the Russian Federation//K2-2019-001/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2018%2F123/ES/Materiales avanzados para el uso eficiente de la energia (EFIMAT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RYC-2015-17482/ES/RYC-2015-17482/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/FIS2017-83295-P/ES/EN BUSCA DE LA REACCION DEL HELIO EN CONDICIONES EXTREMAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Diseño para la Fabricación y Producción Automatizada - Institut de Disseny per a la Fabricació i Producció Automatitzada es_ES
dc.description.bibliographicCitation Monteseguro, V.; Sans-Tresserras, JÁ.; Cuartero, V.; Cova, F.; Abrikosov, I.; Olovsson, W.; Popescu, C.... (2019). Phase stability and electronic structure of iridium metal at the megabar range. Scientific Reports. 9:1-9. https://doi.org/10.1038/s41598-019-45401-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-019-45401-x es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9 es_ES
dc.identifier.pmid 31222067 es_ES
dc.identifier.pmcid PMC6586894 es_ES
dc.relation.pasarela S\401499 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Knut and Alice Wallenberg Foundation es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.contributor.funder Swedish Governmental Agency for Innovation Systems es_ES
dc.contributor.funder Ministry of Science and Higher Education of the Russian Federation es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cynn, H., Klepeis, J. E., Yoo, C.-S. & Young, D. A. Osmium has the Lowest Experimentally Determined Compressibility. Phys. Rev. Lett. 88, 135701–135704 (2002). es_ES
dc.description.references Döhring, T. et al. Prototyping iridium coated mirrors for x-ray astronomy. Proc. SPIE 10235, 1023504–1023511 (2017). es_ES
dc.description.references Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Z. Phys. B: Condens. Matter 64, 189–193 (1986). es_ES
dc.description.references Tokura, Y. & Nagaosa, N. Orbital Physics in Transition-Metal Oxides. Science 288, 462–468 (2000). es_ES
dc.description.references Kobayashi, K.-I., Kimura, T., Sawada, H., Terakura, K. & Tokura, Y. Room-temperature magnetoresistance in an oxide material with an ordered double-perovskite structure. Nature (London) 395, 677–680 (1998). es_ES
dc.description.references Hrubiak, R., Meng, Y. & Shen, G. Microstructures define melting of molybdenum at high pressures. Nature Commun. 8, 14562–14571 (2017). es_ES
dc.description.references Cerenius, Y. & Dubrovinsky, L. Compressibility measurements on iridium. J. Alloys Compd. 306, 26–29 (2000). es_ES
dc.description.references Grussendorff, S., Chetty, N. & Dreysse, H. Theoretical studies of iridium under pressure. J. Phys. Condens. Matter 15, 4127–4134 (2003). es_ES
dc.description.references Burakovsky, L. et al. Ab initio phase diagram of iridium. Phys. Rev. B 94, 094112–094120 (2016). es_ES
dc.description.references Dubrovinsky, L. et al. The most incompressible metal osmium at static pressures above 750 gigapascals. Nature 525, 226–229 (2015). es_ES
dc.description.references Tal, A. A. et al. Pressure-induced crossing of the core levels in 5d metals. Phys. Rev. B 93, 205150–205156 (2016). es_ES
dc.description.references Merkel, S. et al. Deformation of polycrystalline MgO at pressures of the lower mantle. J Geophys Res. 107, 2271–2287 (2002). es_ES
dc.description.references Greenberg, E. et al. Pressure-Induced Site-Selective Mott Insulator-Metal Transition in Fe2O3. Phys. Rev. X 8, 031059–031071 (2018). es_ES
dc.description.references Nemoshkalenko, V. V., Mil’man, V. Y., Zhalko-Titarenko, A. V., Antonov, V. N. & Shitikov, Y. L. Pis’ma Zh. Eksp Teor. Fiz 47, 295–297 (1988). es_ES
dc.description.references Rehr, J. J. & Albers, R. C. Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000). es_ES
dc.description.references Poiarkova, A. V. & Rehr, J. J. Multiple-scattering x-ray-absorption fine-structure Debye-Waller factor calculations. Phys. Rev. B 59, 948–957 (1998). es_ES
dc.description.references Glazyrin, K. et al. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition. Phys. Rev. Lett. 110, 117206–117210 (2013). es_ES
dc.description.references Sham, T. K. L-edge x-ray-absorption systematics of the noble metals Rh, Pd, and Ag and the main-group metals In and Sn: A study of the unoccupied density of states in 4d elements. Phys. Rev. B 31, 1888–1902 (1985). es_ES
dc.description.references Leapman, R. D., Grunes, L. A. & Fejes, P. L. Study of the L23 edges in the 3d transition metals and their oxides by electron-energy-loss spectroscopy with comparisons to theory. Phys. Rev. B 26, 614–635 (1982). es_ES
dc.description.references Choy, J.-H., Kim, D.-K., Hwang, S.-H., Demazeau, G. & Jung, D.-Y. the Ir-O Bond Covalency in Ionic Iridium Perovskites. J. Am. Chem. Soc. 117, 8557–8566 (1995). es_ES
dc.description.references Clancy, J. P. et al. Spin-orbit coupling in iridium-based 5d compounds probed by x-ray absorption spectroscopy. Phys. Rev. B 86, 195131- (2012). es_ES
dc.description.references Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996). es_ES
dc.description.references Dewaele, A., Loubeyre, P. & Mezouar, M. Equations of state of six metals above 94 GPa. Phys. Rev. B 70, 094112–094119 (2004). es_ES
dc.description.references Prescher, C. & Prakapenka, V. B. DIOPTAS: a program for reduction of twodimensional X-ray diffraction data and data exploration. High Pressure Res. 35, 223–230 (2015). es_ES
dc.description.references Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all-purpose crystallography software package. J. Appl. Cryst. 46(2), 544–549 (2013). es_ES
dc.description.references Birch, F. Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300 K. J. Geophys. Res. 83, 1257–1268 (1978). es_ES
dc.description.references Angel, R. J., González-Platas, J. & Alvaro, M. EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr. 229, 405–419 (2014). es_ES
dc.description.references Mathon, O. et al. The time-resolved and extreme conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the general-purpose EXAFS bending-magnet beamline BM23. J. Synchrotron Radiat. 22, 1548–1554 (2015). es_ES
dc.description.references Ohfuji, H. et al. "Natural occurrence of pure nano-polycrystalline diamond from impact crater". Scientific Reports. 5: 14702.s, L. D., 2000. J. Alloys Compd. 306, 26–29 (2015). es_ES
dc.description.references Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–577 (2005). es_ES
dc.description.references Blaha, P., Schwarz, K., Madsen, G. K. H., Kvasnicka, D. & Luitz, J. WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Karlheinz Schwarz, Techn. Universität, Wien, Austria. (2001). es_ES
dc.description.references Perdew, J. P., Burke, S. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem