- -

Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hurel Ezeta, Jorge es_ES
dc.contributor.author Mandow, Anthony es_ES
dc.contributor.author García Cerezo, Alfonso es_ES
dc.date.accessioned 2020-05-22T07:00:43Z
dc.date.available 2020-05-22T07:00:43Z
dc.date.issued 2013-04-07
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144114
dc.description.abstract [ES] El propósito de este artículo es efectuar una revisión del estado del conocimiento en el modelado y control de los sistemas de suspensión activa y semiactiva. Se analizan las principales características de los diferentes tipos de sistemas de suspensión: pasiva, activa y semiactiva. Respecto al modelado y simulación de los sistemas de suspensión, se examinan los distintos enfoques, herramientas y aplicaciones en el contexto de la dinámica vehicular. Además, para el modelo de un cuarto de vehículo, ampliamente utilizado en la literatura, se ofrece su desarrollo mediante ecuaciones diferenciales, función de transferencia, y ecuaciones de estado, incluyendo soluciones y simulaciones en Simulink y SimMechanics. En cuanto al control, se revisan las principales estrategias para la suspensión de vehículos y se apuntan aplicaciones en otros campos de la ingeniería. es_ES
dc.description.abstract [EN] This paper reviews the state of the art in modeling and control of active and semi-active suspension systems. Distinctive characteristics are established for the major types of suspension systems: passive, active, and semi-active. Regarding modeling and simulation, different approaches, tools and applications are discussed in the context of vehicle dynamics. Besides, the quarter car model, which is widely used in research, is developed with differential equations, transfer functions, and state-space equations, as well as solutions for simulation in Simulink and SimMechanics. As for control of active and semi-active systems, the major strategies for vehicle suspension are reviewed. Furthermore, the paper outlines suspension control in other engineering applications. es_ES
dc.description.sponsorship Este trabajo ha sido realizado parcialmente gracias al apoyo del proyecto CICYT DPI 2011-22443. La estancia del primer autor en la Universidad de Málaga ha contado con la financiación de la Escuela Superior Politécnica del Litoral. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Active suspension es_ES
dc.subject Passive suspension es_ES
dc.subject Models es_ES
dc.subject Control es_ES
dc.subject Simulación es_ES
dc.subject Suspensión activa es_ES
dc.subject Modelos es_ES
dc.subject Suspensión pasiva es_ES
dc.subject Robótica es_ES
dc.title Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión es_ES
dc.title.alternative Active and Semi-active Suspension Systems: A Review es_ES
dc.type Artículo es_ES
dc.type Otros es_ES
dc.identifier.doi 10.1016/j.riai.2013.03.002
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//DPI2011-22443/ES/RAMBLER: HACIA LA AUTONOMIA EN ROBOTS DE EXPLORACION DE LARGO ALCANCE EN ESPACIOS NATURALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Hurel Ezeta, J.; Mandow, A.; García Cerezo, A. (2013). Los Sistemas de Suspensión Activa y Semiactiva: Una Revisión. Revista Iberoamericana de Automática e Informática industrial. 10(2):121-132. https://doi.org/10.1016/j.riai.2013.03.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2013.03.002 es_ES
dc.description.upvformatpinicio 121 es_ES
dc.description.upvformatpfin 132 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9535 es_ES
dc.contributor.funder Escuela Superior Politécnica del Litoral es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abdel-Rohman, M., John, M. J., & Hassan, M. F. (2010). Compensation of Time Delay Effect in Semi-active Controlled Suspension Bridges. Journal of Vibration and Control, 16(10), 1527-1558. doi:10.1177/1077546309106518 es_ES
dc.description.references Allotta, B., Pugi, L., & Bartolini, F. (2008). Design and Experimental Results of an Active Suspension System for a High-Speed Pantograph. IEEE/ASME Transactions on Mechatronics, 13(5), 548-557. doi:10.1109/tmech.2008.2002145 es_ES
dc.description.references Balike, K. P., Rakheja, S., & Stiharu, I. (2011). Development of kineto-dynamic quarter-car model for synthesis of a double wishbone suspension. Vehicle System Dynamics, 49(1-2), 107-128. doi:10.1080/00423110903401905 es_ES
dc.description.references Boada, M. J. L., Boada, B. L., Castejon, C., & Diaz, V. (2005). A fuzzy-based suspension vehicle depending on terrain. International Journal of Vehicle Design, 37(4), 311. doi:10.1504/ijvd.2005.006597 es_ES
dc.description.references Boers, Y., Weiland, S., & Damen, A. (2002). Average H 2 control by randomized algorithms. International Journal of Control, 75(9), 637-644. doi:10.1080/00207170210134228 es_ES
dc.description.references Bouazara, M., Gosselin-Brisson, S., & Richard, M. J. (2007). DESIGN OF AN ACTIVE SUSPENSION CONTROL FOR A VEHICLE MODEL USING A GENETIC ALGORITHM. Transactions of the Canadian Society for Mechanical Engineering, 31(3), 317-333. doi:10.1139/tcsme-2007-0021 es_ES
dc.description.references Bronowicki, A. J., Abhyankar, N. S., & Griffin, S. F. (1999). Active vibration control of large optical space structures. Smart Materials and Structures, 8(6), 740-752. doi:10.1088/0964-1726/8/6/304 es_ES
dc.description.references Cao, J., Li, P., & Liu, H. (2010). An Interval Fuzzy Controller for Vehicle Active Suspension Systems. IEEE Transactions on Intelligent Transportation Systems, 11(4), 885-895. doi:10.1109/tits.2010.2053358 es_ES
dc.description.references Jiangtao Cao, Honghai Liu, Ping Li, & Brown, D. J. (2008). State of the Art in Vehicle Active Suspension Adaptive Control Systems Based on Intelligent Methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405. doi:10.1109/tits.2008.928244 es_ES
dc.description.references Chen, Y. (2009). Skyhook Surface Sliding Mode Control on Semi-Active Vehicle Suspension System for Ride Comfort Enhancement. Engineering, 01(01), 23-32. doi:10.4236/eng.2009.11004 es_ES
dc.description.references Choi, S.-B., Lee, H.-S., & Park, Y.-P. (2002). H8 Control Performance of a Full-Vehicle Suspension Featuring Magnetorheological Dampers. Vehicle System Dynamics, 38(5), 341-360. doi:10.1076/vesd.38.5.341.8283 es_ES
dc.description.references Christenson, R.E., 2001. Semiactive control of civil structures for natural hazard mitigation: Analytical and experimental studies. Ph.D. thesis, Department of Civil Engineering and Geological Sciences, Notre Dame, Indiana. es_ES
dc.description.references Díaz, I. M., Pereira, E., Hudson, M. J., & Reynolds, P. (2012). Enhancing active vibration control of pedestrian structures using inertial actuators with local feedback control. Engineering Structures, 41, 157-166. doi:10.1016/j.engstruct.2012.03.043 es_ES
dc.description.references Dong, X., Yu, M., Liao, C., & Chen, W. (2009). Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dynamics, 59(3), 433-453. doi:10.1007/s11071-009-9550-8 es_ES
dc.description.references Fischer, D., & Isermann, R. (2004). Mechatronic semi-active and active vehicle suspensions. Control Engineering Practice, 12(11), 1353-1367. doi:10.1016/j.conengprac.2003.08.003 es_ES
dc.description.references Fleming, P. ., & Purshouse, R. . (2002). Evolutionary algorithms in control systems engineering: a survey. Control Engineering Practice, 10(11), 1223-1241. doi:10.1016/s0967-0661(02)00081-3 es_ES
dc.description.references FRUHAUF, F., KASPER, R., & LÜCKEL, J. (1985). Design of an Active Suspension for a Passenger Vehicle Model Using Input Processes with Time Delays. Vehicle System Dynamics, 14(1-3), 115-120. doi:10.1080/00423118508968811 es_ES
dc.description.references Gao, R. Z., Xu, Z. Q., & Zhang, J. J. (2010). Optimization of Fuzzy Logic Rules Based on Improved Genetic Algorithm. Applied Mechanics and Materials, 44-47, 1496-1499. doi:10.4028/www.scientific.net/amm.44-47.1496 es_ES
dc.description.references Guglielmino, E., & Edge, K. A. (2004). A controlled friction damper for vehicle applications. Control Engineering Practice, 12(4), 431-443. doi:10.1016/s0967-0661(03)00119-9 es_ES
dc.description.references Guo, D. L., Hu, H. Y., & Yi, J. Q. (2004). Neural Network Control for a Semi-Active Vehicle Suspension with a Magnetorheological Damper. Journal of Vibration and Control, 10(3), 461-471. doi:10.1177/1077546304038968 es_ES
dc.description.references Gysen, B. L. J., Janssen, J. L. G., Paulides, J. J. H., & Lomonova, E. A. (2009). Design Aspects of an Active Electromagnetic Suspension System for Automotive Applications. IEEE Transactions on Industry Applications, 45(5), 1589-1597. doi:10.1109/tia.2009.2027097 es_ES
dc.description.references Heath, E.T., 2005. Vehicle active suspension system sensor reduction. Ph.D. thesis, University of Texas, Austin. es_ES
dc.description.references Hrovat, D. (1990). Optimal active suspension structures for quarter-car vehicle models. Automatica, 26(5), 845-860. doi:10.1016/0005-1098(90)90002-y es_ES
dc.description.references Hrovat, D. (1997). Survey of Advanced Suspension Developments and Related Optimal Control Applications11This paper was not presented at any IFAC meeting. This paper was recommended for publication in revised form by Editor Karl Johan Åström.,22Simple, mostly LQ-based optimal control concepts gave useful insight about performance potentials, bandwidth requirements, and optimal structure of advanced vehicle suspensions. The present paper reviews these optimal control applications and related practical developments. Automatica, 33(10), 1781-1817. doi:10.1016/s0005-1098(97)00101-5 es_ES
dc.description.references Huang, S.-J., & Chen, H.-Y. (2006). Adaptive sliding controller with self-tuning fuzzy compensation for vehicle suspension control. Mechatronics, 16(10), 607-622. doi:10.1016/j.mechatronics.2006.06.002 es_ES
dc.description.references Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P. (2003). Autonomous Robots, 14(1), 5-16. doi:10.1023/a:1020962718637 es_ES
dc.description.references Karnopp, D. (1986). Theoretical Limitations in Active Vehicle Suspensions. Vehicle System Dynamics, 15(1), 41-54. doi:10.1080/00423118608968839 es_ES
dc.description.references Karnopp, D., Crosby, M. J., & Harwood, R. A. (1974). Vibration Control Using Semi-Active Force Generators. Journal of Engineering for Industry, 96(2), 619-626. doi:10.1115/1.3438373 es_ES
dc.description.references KARNOPP, D., & SO, S.-G. (1998). Energy Flow in Active Attitude Control Suspensions: A Bond Graph Analysis. Vehicle System Dynamics, 29(2), 69-81. doi:10.1080/00423119808969367 es_ES
dc.description.references Kazerooni, H., Chu, A., & Steger, R. (2007). That Which Does Not Stabilize, Will Only Make Us Stronger. The International Journal of Robotics Research, 26(1), 75-89. doi:10.1177/0278364907074472 es_ES
dc.description.references Kim, C., Ro, P. I., & Kim, H. (1999). Effect of the suspension structure on equivalent suspension parameters. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 213(5), 457-470. doi:10.1243/0954407991527026 es_ES
dc.description.references Donghyun Kim, Sungho Hwang, & Hyunsoo Kim. (2008). Vehicle Stability Enhancement of Four-Wheel-Drive Hybrid Electric Vehicle Using Rear Motor Control. IEEE Transactions on Vehicular Technology, 57(2), 727-735. doi:10.1109/tvt.2007.907016 es_ES
dc.description.references Koch, G., Fritsch, O., & Lohmann, B. (2010). Potential of low bandwidth active suspension control with continuously variable damper. Control Engineering Practice, 18(11), 1251-1262. doi:10.1016/j.conengprac.2010.03.007 es_ES
dc.description.references Korkmaz, S. (2011). A review of active structural control: challenges for engineering informatics. Computers & Structures, 89(23-24), 2113-2132. doi:10.1016/j.compstruc.2011.07.010 es_ES
dc.description.references Koulocheris D.V., Dertimanis V.K., 2009. Design of a novel hybrid optimization algorithm. In: ICINCO 6th International Conference on Informatics in Control, Automation and Robotics. Vol. 1 ICSO. pp. 129-135. es_ES
dc.description.references Kowal, J., Pluta, J., Konieczny, J., & Kot, A. (2008). Energy Recovering in Active Vibration Isolation System — Results of Experimental Research. Journal of Vibration and Control, 14(7), 1075-1088. doi:10.1177/1077546308088980 es_ES
dc.description.references Kumar, M.S., 2008. Development of active suspension system for automobiles using PID controller. In: Proceedings of the World Congress on Engineering. Vol. II. London, UK. es_ES
dc.description.references Lan, K.-J., Yen, J.-Y., & Kramar, J. A. (2004). Sliding mode control for active vibration isolation of a long range scanning tunneling microscope. Review of Scientific Instruments, 75(11), 4367-4373. doi:10.1063/1.1807005 es_ES
dc.description.references Lee, H. (2004). Virtual Test Track. IEEE Transactions on Vehicular Technology, 53(6), 1818-1826. doi:10.1109/tvt.2004.836958 es_ES
dc.description.references Lee, H.-J., Jung, H.-J., Cho, S.-W., & Lee, I.-W. (2008). An Experimental Study of Semiactive Modal Neuro-control Scheme Using MR Damper for Building Structure. Journal of Intelligent Material Systems and Structures, 19(9), 1005-1015. doi:10.1177/1045389x07083024 es_ES
dc.description.references Lee, H.-S., & Choi, S.-B. (2000). Control and Response Characteristics of a Magneto-Rheological Fluid Damper for Passenger Vehicles. Journal of Intelligent Materials Systems and Structures, 11(1), 80-87. doi:10.1177/104538900772664422 es_ES
dc.description.references Yu-Chen Lin, Chun-Liang Lin, & Niahn-Chung Shieh. (2006). A hybrid evolutionary approach for robust active suspension design of light rail vehicles. IEEE Transactions on Control Systems Technology, 14(4), 695-706. doi:10.1109/tcst.2006.876639 es_ES
dc.description.references Lizarraga, J., Sala, J. A., & Biera, J. (2008). Modelling of friction phenomena in sliding conditions in suspension shock absorbers. Vehicle System Dynamics, 46(sup1), 751-764. doi:10.1080/00423110802037024 es_ES
dc.description.references Lou, Z., Ervin, R. D., & Filisko, F. E. (1994). A Preliminary Parametric Study of Electrorheological Dampers. Journal of Fluids Engineering, 116(3), 570-576. doi:10.1115/1.2910315 es_ES
dc.description.references MALEK, K. M., & HEDRICK, J. K. (1985). Decoupled Active Suspension Design for Improved Automotive Ride Quality/Handling Performance. Vehicle System Dynamics, 14(1-3), 78-81. doi:10.1080/00423118508968802 es_ES
dc.description.references Mántaras, D. A., Luque, P., & Vera, C. (2004). Development and validation of a three-dimensional kinematic model for the McPherson steering and suspension mechanisms. Mechanism and Machine Theory, 39(6), 603-619. doi:10.1016/j.mechmachtheory.2003.12.006 es_ES
dc.description.references Margolis, D., & Shim, T. (2001). A bond graph model incorporating sensors, actuators, and vehicle dynamics for developing controllers for vehicle safety. Journal of the Franklin Institute, 338(1), 21-34. doi:10.1016/s0016-0032(00)00068-5 es_ES
dc.description.references Mei, T., Foo, T., Goodall, R., 2005. Genetic algorithms for optimising active controls in railway vehicles. IEE Colloquium (Digest) 521, 10/1-10/8. es_ES
dc.description.references Mei, T. X., & Goodall, R. M. (2002). Use of multiobjective genetic algorithms to optimize inter-vehicle active suspensions. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(1), 53-63. doi:10.1243/0954409021531683 es_ES
dc.description.references Mudi, R. K., & Pal, N. R. (1999). A robust self-tuning scheme for PI- and PD-type fuzzy controllers. IEEE Transactions on Fuzzy Systems, 7(1), 2-16. doi:10.1109/91.746295 es_ES
dc.description.references Nagai, M., Moran, A., Tamura, Y., & Koizumi, S. (1997). Identification and control of nonlinear active pneumatic suspension for railway vehicles, using neural networks. Control Engineering Practice, 5(8), 1137-1144. doi:10.1016/s0967-0661(97)00107-x es_ES
dc.description.references Nehl, T. W., Betts, J. A., & Mihalko, L. S. (1996). An integrated relative velocity sensor for real-time damping applications. IEEE Transactions on Industry Applications, 32(4), 873-881. doi:10.1109/28.511644 es_ES
dc.description.references Nguyen, L.H., Park, S., Turnip, A., Hong, K.-S., 2009. Modified skyhook control of a suspension system with hydraulic strut mount. In: ICCAS-SICE, 2009. pp. 1347-1352. es_ES
dc.description.references Olsson, C. (2006). Active automotive engine vibration isolation using feedback control. Journal of Sound and Vibration, 294(1-2), 162-176. doi:10.1016/j.jsv.2005.10.022 es_ES
dc.description.references Papegay, Y. A., Merlet, J.-P., & Daney, D. (2005). Exact kinematics analysis of Car’s suspension mechanisms using symbolic computation and interval analysis. Mechanism and Machine Theory, 40(4), 395-413. doi:10.1016/j.mechmachtheory.2003.07.003 es_ES
dc.description.references Patil, N. J., Chile, D. R. H., & Waghmare, D. L. M. (2010). Fuzzy Adaptive Controllers for Speed Control of PMSM Drive. International Journal of Computer Applications, 1(11), 91-98. doi:10.5120/233-387 es_ES
dc.description.references POETSCH, G., EVANS, J., MEISINGER, R., KORTÜM, W., BALDAUF, W., VEITL, A., & WALLASCHEK, J. (1997). Pantograph/Catenary Dynamics and Control. Vehicle System Dynamics, 28(2-3), 159-195. doi:10.1080/00423119708969353 es_ES
dc.description.references Potau, X., Comellas, M., Nogués, M., & Roca, J. (2011). Comparison of different bogie configurations for a vehicle operating in rough terrain. Journal of Terramechanics, 48(1), 75-84. doi:10.1016/j.jterra.2010.06.002 es_ES
dc.description.references Rattasiri, W., & Halgamuge, S. K. (2003). Computationally advantageous and stable hierarchical fuzzy systems for active suspension. IEEE Transactions on Industrial Electronics, 50(1), 48-61. doi:10.1109/tie.2002.807676 es_ES
dc.description.references Palupi Rini, D., Mariyam Shamsuddin, S., & Sophiyati Yuhaniz, S. (2011). Particle Swarm Optimization: Technique, System and Challenges. International Journal of Computer Applications, 14(1), 19-27. doi:10.5120/1810-2331 es_ES
dc.description.references Rivin, E. I. (1985). Passive Engine Mounts-Some Directions for Further Development. SAE Technical Paper Series. doi:10.4271/850481 es_ES
dc.description.references ROTH, P.-A., & LIZELL, M. (1996). A Lateral Semi-Active Damping System For Trains. Vehicle System Dynamics, 25(sup1), 585-598. doi:10.1080/00423119608969222 es_ES
dc.description.references Samin, J. C., Brüls, O., Collard, J. F., Sass, L., & Fisette, P. (2007). Multiphysics modeling and optimization of mechatronic multibody systems. Multibody System Dynamics, 18(3), 345-373. doi:10.1007/s11044-007-9076-0 es_ES
dc.description.references Sassi, S., Cherif, K., Mezghani, L., Thomas, M., & Kotrane, A. (2005). An innovative magnetorheological damper for automotive suspension: from design to experimental characterization. Smart Materials and Structures, 14(4), 811-822. doi:10.1088/0964-1726/14/4/041 es_ES
dc.description.references Schiehlen, W. (2007). Research trends in multibody system dynamics. Multibody System Dynamics, 18(1), 3-13. doi:10.1007/s11044-007-9064-4 es_ES
dc.description.references Schiehlen, W., Guse, N., & Seifried, R. (2006). Multibody dynamics in computational mechanics and engineering applications. Computer Methods in Applied Mechanics and Engineering, 195(41-43), 5509-5522. doi:10.1016/j.cma.2005.04.024 es_ES
dc.description.references Schoenfeld, K., Hartmut, G., Hesse, 1991. Electronically controlled air suspension (ECAS) for commercial vehicles. SAE Special Publications 892, 15-24. es_ES
dc.description.references Sharp, R. S., & Hassan, S. A. (1986). The Relative Performance Capabilities of Passive, Active and Semi-Active Car Suspension Systems. Proceedings of the Institution of Mechanical Engineers, Part D: Transport Engineering, 200(3), 219-228. doi:10.1243/pime_proc_1986_200_183_02 es_ES
dc.description.references Yongjun Shen, Shaopu Yang, & Wanjian Yin. (2006). Application of Magnetorheological Damper in Vibration Control of Locomotive. 2006 6th World Congress on Intelligent Control and Automation. doi:10.1109/wcica.2006.1713554 es_ES
dc.description.references Shirahatti, A., Prasad, P. S. S., Panzade, P., & Kulkarni, M. M. (2008). Optimal design of passenger car suspension for ride and road holding. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 30(1), 66-76. doi:10.1590/s1678-58782008000100010 es_ES
dc.description.references Siau, G.R., July 2008. Equivalent spring and damper for conceptual suspension modeling. Master's thesis, Eindhoven University of Technology. es_ES
dc.description.references Spelta, C., Previdi, F., Savaresi, S. M., Fraternale, G., & Gaudiano, N. (2009). Control of magnetorheological dampers for vibration reduction in a washing machine. Mechatronics, 19(3), 410-421. doi:10.1016/j.mechatronics.2008.09.006 es_ES
dc.description.references Spencer, B. F., Dyke, S. J., Sain, M. K., & Carlson, J. D. (1997). Phenomenological Model for Magnetorheological Dampers. Journal of Engineering Mechanics, 123(3), 230-238. doi:10.1061/(asce)0733-9399(1997)123:3(230) es_ES
dc.description.references Tang, X., Zuo, L., 2010. Regenerative semi-active control of tall building vibration with series TMDs. No. 5530485. pp. 5094-5099. es_ES
dc.description.references Thompson, Davis, B., 1991. A technical note on the lotus suspension patents. Vehicle System Dynamics 20 (6), 381-383. es_ES
dc.description.references Venugopal, R., Beine, M., & Ruekgauer, A. (2002). Real-time simulation of adaptive suspension control using dSPACE control development tools. International Journal of Vehicle Design, 29(1/2), 128. doi:10.1504/ijvd.2002.002005 es_ES
dc.description.references Waldron, K. J., & Abdallah, M. E. (2007). An Optimal Traction Control Scheme for Off-Road Operation of Robotic Vehicles. IEEE/ASME Transactions on Mechatronics, 12(2), 126-133. doi:10.1109/tmech.2007.892819 es_ES
dc.description.references Wang, J., Fan, Z., Terpenny, J. P., & Goodman, E. D. (2005). Knowledge Interaction With Genetic Programming in Mechatronic Systems Design Using Bond Graphs. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35(2), 172-182. doi:10.1109/tsmcc.2004.841915 es_ES
dc.description.references WANG, Q. (2008). Simultaneous Optimization of Mechanical and Control Parameters for Integrated Control System of Active Suspension and Electric Power Steering. Chinese Journal of Mechanical Engineering, 44(08), 67. doi:10.3901/jme.2008.08.067 es_ES
dc.description.references Yagiz, N., & Yuksek, I. (2001). Sliding mode control of active suspensions for a full vehicle model. International Journal of Vehicle Design, 26(2/3), 264. doi:10.1504/ijvd.2001.001943 es_ES
dc.description.references Yang, Y., Ren, W., Chen, L., Jiang, M., & Yang, Y. (2009). Study on ride comfort of tractor with tandem suspension based on multi-body system dynamics. Applied Mathematical Modelling, 33(1), 11-33. doi:10.1016/j.apm.2007.10.011 es_ES
dc.description.references Yoshimura, T., Nakaminami, K., Kurimoto, M., & Hino, J. (1999). Active suspension of passenger cars using linear and fuzzy-logic controls. Control Engineering Practice, 7(1), 41-47. doi:10.1016/s0967-0661(98)00145-2 es_ES
dc.description.references Zapateiro, M., Karimi, H. R., & Luo, N. (2011). Semiactive vibration control of nonlinear structures through adaptive backstepping techniques withH∞performance. International Journal of Systems Science, 42(5), 853-861. doi:10.1080/00207721.2010.502263 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem