- -

Investigation of railway curve squeal using a combination of frequency- and time-domain models

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Investigation of railway curve squeal using a combination of frequency- and time-domain models

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pieringer, A. es_ES
dc.contributor.author Torstensson, Peter T. es_ES
dc.contributor.author Giner Navarro, Juan es_ES
dc.contributor.author Baeza González, Luis Miguel es_ES
dc.date.accessioned 2020-06-03T05:53:16Z
dc.date.available 2020-06-03T05:53:16Z
dc.date.issued 2018-05-20 es_ES
dc.identifier.issn 1612-2909 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145117
dc.description.abstract [EN] Railway curve squeal arises from self-excited vibrations during curving. In this paper, a frequency- and a time-domain approach for curve squeal are compared. In particular, the capability of the frequency-domain model to predict the onset of squeal and the squeal frequencies is studied. In the frequency-domain model, linear stability is investigated through complex eigenvalue analysis. The time-domain model is based on a Green¿s function approach and uses a convolution procedure to obtain the system response. To ensure comparability, the same submodels are implemented in both squeal models. The structural flexibility of a rotating wheel is modelled by adopting Eulerian coordinates. To account for the moving wheel¿rail contact load, the so-called moving element method is used to model the track. The local friction characteristics in the contact zone are modelled in accordance with Coulomb¿s law with a constant friction coefficient. The frictional instability arises due to geometrical coupling. In the time-domain model, Kalker¿s non-linear, non-steady state rolling contact model including the algorithms NORM and TANG for normal and tangential contact, respectively, is solved in each time step. In the frequency-domain model, the normal wheel/rail contact is modelled by a linearization of the force-displacement relation obtained with NORM around the quasi-static state and full-slip conditions are considered in the tangential direction. Conditions similar to those of a curve on the Stockholm metro exposed to severe curve squeal are studied with both squeal models. The influence of the wheel-rail friction coefficient and the direction of the resulting creep force on the occurrence of squeal is investigated for vanishing train speed. Results from both models are similar in terms of the instability range in the parameter space and the predicted squeal frequencies. es_ES
dc.language Inglés es_ES
dc.publisher Springer es_ES
dc.relation.ispartof Notes on Numerical Fluid Mechanics and Multidisciplinary Design es_ES
dc.relation.ispartof Noise and Vibration Mitigation for Rail Transportation Systems es_ES
dc.relation.ispartofseries Notes on Numerical Fluid Mechanics and Multidisciplinary Design es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Investigation of railway curve squeal using a combination of frequency- and time-domain models es_ES
dc.type Artículo es_ES
dc.type Comunicación en congreso es_ES
dc.type Capítulo de libro es_ES
dc.identifier.doi 10.1007/978-3-319-73411-8_5 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Pieringer, A.; Torstensson, PT.; Giner Navarro, J.; Baeza González, LM. (2018). Investigation of railway curve squeal using a combination of frequency- and time-domain models. Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 139:83-95. https://doi.org/10.1007/978-3-319-73411-8_5 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 12th International Workshop on Railway Noise (IWRN12) es_ES
dc.relation.conferencedate Septiembre 12-16,2016 es_ES
dc.relation.conferenceplace Terrigal, Australia es_ES
dc.relation.publisherversion https://doi.org/10.1007/978-3-319-73411-8_5 es_ES
dc.description.upvformatpinicio 83 es_ES
dc.description.upvformatpfin 95 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 139 es_ES
dc.relation.pasarela S\387378 es_ES
dc.description.references Thompson, D.: Railway noise and vibration: Mechanisms, Modelling and Means of Control. Elsevier, Oxford (2009) es_ES
dc.description.references Fingberg, U.: A model for wheel-rail squealing noise. J. Sound Vib. 143, 365–377 (1990) es_ES
dc.description.references Chiello, O., Ayasse, J.-B., Vincent, N., Koch, J.-R.: Curve squeal of urban rolling stock—part 3: theoretical model. J. Sound Vib. 293, 710–727 (2006) es_ES
dc.description.references Pieringer, A.: A numerical investigation of curve squeal in the case of constant wheel/rail friction. J. Sound Vib. 333(18), 4295–4313 (2014) es_ES
dc.description.references Fayos, J., Baeza, L., Denia, F.D., Tarancón, J.E.: An Eulerian coordinate-based method for analysing the structural vibrations of a solid of revolution rotating about its main axis. J. Sound Vib. 306(3–5), 618–635 (2007) es_ES
dc.description.references Pieringer, A., Baeza, L., Kropp, W.: Modelling of railway curve squeal including effects of wheel rotation. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems, pp. 417–424. Springer, Berlin Heidelberg (2015). (NNFM 126) es_ES
dc.description.references Martínez-Casas, J., Mazzola, L., Baeza, L., Bruni, S.: Numerical estimation of stresses in railway axles using train-track interaction model. Int. J. Fatigue 47, 18–30 (2013) es_ES
dc.description.references Andersson, C.: Modelling and simulation of train-track interaction including wear prediction. Ph.D. thesis, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden (2003) es_ES
dc.description.references Nilsson, C.-M., Jones, C.J.C., Thompson, D.J., Ryue, J.: A waveguide finite element and boundary element approach to calculating the sound radiated by railway and tram rails. J. Sound Vib. 321, 813–836 (2009) es_ES
dc.description.references Koh, C.G., Ong, J.S.Y., Chua, D.K.H., Feng, J.: Moving element method for train-track dynamics. Int. J. Numer. Meth. Eng. 56(11), 1549–1567 (2003) es_ES
dc.description.references Rudd, M.J.: Wheel/rail noise - part II: wheel squeal. J. Sound Vib. 46(3), 381–394 (1976) es_ES
dc.description.references Hoffmann, N., Fischer, M., Allgaier, R., Gaul, L.: A minimal model for studying properties of the mode-coupling type instability in friction induced oscillations. Mech. Res. Commun. 29(4), 197–205 (2002) es_ES
dc.description.references Heckl, M.A.: Curve squeal of train wheels, part 2: which wheel modes are prone to squeal? J. Sound Vib. 229(3), 695–707 (2000) es_ES
dc.description.references de Beer, F.G., Janssens, M.H.A., Kooijman, P.P.: Squeal noise of rail-bound vehicles influenced by lateral contact position. J. Sound Vib. 267, 497–507 (2003) es_ES
dc.description.references Squicciarini, G., Usberti, S., Thompson, D.J., Corradi, R., Barbera, A.: Curve squeal in the presence of two wheel/rail contact points. In: Nielsen, J.C.O., et al. (eds.) Noise and Vibration Mitigation for Rail Transportation Systems, pp. 603–610. Springer, Berlin Heidelberg (2015). (NNFM 126) es_ES
dc.description.references Glocker, Ch., Cataldi-Spinola, E., Leine, R.I.: Curve squealing of trains: measurements, modelling and simulation. J. Sound Vib. 324, 365–386 (2009) es_ES
dc.description.references Torstensson, P.T., Pieringer, A., Baeza, L.: Towards a model for prediction of railway tread brake noise. In: The ISMA Conference on Noise and Vibration Engineering (ISMA 2014), Leuven, Belgium, 3543–3556 (2014) es_ES
dc.description.references Pieringer, A., Torstensson, P.T., Giner, J.: Curve squeal of rail vehicles: linear stability analysis and non-linear time-domain simulation. In: Pombo, J. (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance. Civil-Comp Press, Stirlingshire, Scotland (2016) es_ES
dc.description.references Torstensson, P.T., Nielsen, J.C.O.: Monitoring of rail corrugation growth due to irregular wear on a railway metro curve. Wear 267(1–4), 556–561 (2009) es_ES
dc.description.references Kalker, J.J.: Three-Dimensional Elastic Bodies in Rolling Contact. Kluwer Academic Publishers, Dordrecht (1990) es_ES
dc.description.references Pieringer, A.: Time-domain modelling of high-frequency wheel/rail interaction. Ph.D. thesis, Department of Civil and Environmental Engineering, Chalmers University of Technology, Göteborg, Sweden (2011) es_ES
dc.description.references Torstensson, P.T.: Rail corrugation growth on curves. Ph.D. thesis, Department of Applied Mechanics, Chalmers University of Technology, Göteborg, Sweden, 2012 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem