- -

Assessing the optimum combustion under constrained conditions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Assessing the optimum combustion under constrained conditions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Olmeda, P. es_ES
dc.contributor.author Martín, Jaime es_ES
dc.contributor.author Novella Rosa, Ricardo es_ES
dc.contributor.author Blanco-Cavero, Diego es_ES
dc.date.accessioned 2020-06-05T03:32:15Z
dc.date.available 2020-06-05T03:32:15Z
dc.date.issued 2020-06-01 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/145397
dc.description.abstract [EN] This work studies the optimum heat release law of a direct injection diesel engine under constrained conditions. For this purpose, a zero-dimensional predictive model of a diesel engine is coupled to an optimization tool used to shape the heat release law in order to optimize some outputs (maximize gross indicated efficiency and minimize NOx emissions) while keeping several restrictions (mechanical limits such as maximum peak pressure and maximum pressure rise rate). In a first step, this methodology is applied under different heat transfer scenarios without restrictions to evaluate the possible gain obtained through the thermal isolation of the combustion chamber. Results derived from this study show that heat transfer has a negative effect on gross indicated efficiency ranging from -4% of the fuel energy (m(f)H(v)), at high engine speed and load, up to -8% m(f)H(v), at low engine speed and load. In a second step, different mechanical limits are applied resulting in a gross indicated efficiency worsening from -1.4% m(f)H(v) up to -2.8% m(f)H(v) compared to the previous step when nominal constraints are applied. In these conditions, a temperature swing coating that covers the piston top and cylinder head is considered obtaining a maximum gross indicated efficiency improvement of +0.5% m(f)H(v) at low load and engine speed. Finally, NOx emissions are also included in the optimization obtaining the expected tradeoff between gross indicated efficiency and NOx. Under this optimization, cutting down the experimental emissions by 50% supposes a gross indicated efficiency penalty up to -8% m(f)H(v) when compared to the optimum combustion under nominal limits, while maintaining the experimental gross indicated efficiency allows to reduce the experimental emissions 30% at high load and 65% at low load and engine speed. es_ES
dc.description.sponsorship This work was partially funded by GM Global R&D and the Government of Spain through Project TRA2017-89894-R. In addition, the authors acknowledge that some equipment used in this work has been partially supported by FEDER project funds (FEDER-ICTS-2012-06), framed in the operational programme of unique scientific and technical infrastructure of the Ministry of Science and Innovation of Spain. Diego Blanco-Cavero is partially supported through contract FPI-S2-2016-1356 of the Programa de Apoyo para la Investigacion y Desarrollo (PAID) of Universitat Politcenica de Valencia. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel engine es_ES
dc.subject Combustion optimization es_ES
dc.subject NOx emissions es_ES
dc.subject Temperature swing coating es_ES
dc.subject Efficiency es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Assessing the optimum combustion under constrained conditions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418814086 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-S2-2016-1356/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ICTS-2012-06/ES/Dotación de infraestructuras científico técnicas para el Centro Integral de Mejora Energética y Medioambiental de Sistemas de Transporte (CiMeT)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-89894-R/ES/METODOLOGIA PARA LA PREDICCION DE EMISIONES DE CO2 Y CONTAMINANTES DE UN MOTOR ALTERNATIVO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Olmeda, P.; Martín, J.; Novella Rosa, R.; Blanco-Cavero, D. (2020). Assessing the optimum combustion under constrained conditions. International Journal of Engine Research. 21(5):811-823. https://doi.org/10.1177/1468087418814086 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418814086 es_ES
dc.description.upvformatpinicio 811 es_ES
dc.description.upvformatpfin 823 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 21 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\383288 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Degraeuwe, B., & Weiss, M. (2017). Does the New European Driving Cycle (NEDC) really fail to capture the NOX emissions of diesel cars in Europe? Environmental Pollution, 222, 234-241. doi:10.1016/j.envpol.2016.12.050 es_ES
dc.description.references Benajes, J., García, A., Monsalve-Serrano, J., & Villalta, D. (2018). Exploring the limits of the reactivity controlled compression ignition combustion concept in a light-duty diesel engine and the influence of the direct-injected fuel properties. Energy Conversion and Management, 157, 277-287. doi:10.1016/j.enconman.2017.12.028 es_ES
dc.description.references Kiplimo, R., Tomita, E., Kawahara, N., & Yokobe, S. (2012). Effects of spray impingement, injection parameters, and EGR on the combustion and emission characteristics of a PCCI diesel engine. Applied Thermal Engineering, 37, 165-175. doi:10.1016/j.applthermaleng.2011.11.011 es_ES
dc.description.references Wakisaka, Y., Inayoshi, M., Fukui, K., Kosaka, H., Hotta, Y., Kawaguchi, A., & Takada, N. (2016). Reduction of Heat Loss and Improvement of Thermal Efficiency by Application of «Temperature Swing» Insulation to Direct-Injection Diesel Engines. SAE International Journal of Engines, 9(3), 1449-1459. doi:10.4271/2016-01-0661 es_ES
dc.description.references Caputo, S., Millo, F., Cifali, G., & Pesce, F. C. (2017). Numerical Investigation on the Effects of Different Thermal Insulation Strategies for a Passenger Car Diesel Engine. SAE International Journal of Engines, 10(4), 2154-2165. doi:10.4271/2017-24-0021 es_ES
dc.description.references Payri, F., Olmeda, P., Martin, J., & Carreño, R. (2014). A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 7(1), 43-59. doi:10.4271/2014-01-0665 es_ES
dc.description.references Benajes, J., Olmeda, P., Martín, J., Blanco-Cavero, D., & Warey, A. (2017). Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 122, 168-181. doi:10.1016/j.energy.2017.01.082 es_ES
dc.description.references RAKOPOULOS, C., & GIAKOUMIS, E. (2006). Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 32(1), 2-47. doi:10.1016/j.pecs.2005.10.001 es_ES
dc.description.references Eriksson, L., & Sivertsson, M. (2015). Computing Optimal Heat Release Rates in Combustion Engines. SAE International Journal of Engines, 8(3), 1069-1079. doi:10.4271/2015-01-0882 es_ES
dc.description.references Eriksson, L., & Sivertsson, M. (2016). Calculation of Optimal Heat Release Rates under Constrained Conditions. SAE International Journal of Engines, 9(2), 1143-1162. doi:10.4271/2016-01-0812 es_ES
dc.description.references Guardiola, C., Climent, H., Pla, B., & Reig, A. (2017). Optimal Control as a method for Diesel engine efficiency assessment including pressure and NO x constraints. Applied Thermal Engineering, 117, 452-461. doi:10.1016/j.applthermaleng.2017.02.056 es_ES
dc.description.references Payri, F., Olmeda, P., Martín, J., & García, A. (2011). A complete 0D thermodynamic predictive model for direct injection diesel engines. Applied Energy, 88(12), 4632-4641. doi:10.1016/j.apenergy.2011.06.005 es_ES
dc.description.references Lapuerta, M., Armas, O., & Hernández, J. J. (1999). Diagnosis of DI Diesel combustion from in-cylinder pressure signal by estimation of mean thermodynamic properties of the gas. Applied Thermal Engineering, 19(5), 513-529. doi:10.1016/s1359-4311(98)00075-1 es_ES
dc.description.references Payri, F., Molina, S., Martín, J., & Armas, O. (2006). Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 26(2-3), 226-236. doi:10.1016/j.applthermaleng.2005.05.006 es_ES
dc.description.references Torregrosa, A. J., Olmeda, P., Martín, J., & Romero, C. (2011). A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 32(10), 891-904. doi:10.1080/01457632.2011.548639 es_ES
dc.description.references Benajes, J., Novella, R., De Lima, D., & Tribotté, P. (2014). Analysis of combustion concepts in a newly designed two-stroke high-speed direct injection compression ignition engine. International Journal of Engine Research, 16(1), 52-67. doi:10.1177/1468087414562867 es_ES
dc.description.references Benajes, J., Martín, J., Novella, R., & Thein, K. (2016). Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 161, 465-475. doi:10.1016/j.apenergy.2015.10.034 es_ES
dc.description.references Guardiola, C., Martín, J., Pla, B., & Bares, P. (2017). Cycle by cycle NOx model for diesel engine control. Applied Thermal Engineering, 110, 1011-1020. doi:10.1016/j.applthermaleng.2016.08.170 es_ES
dc.description.references Benajes, J., Olmeda, P., Martín, J., & Carreño, R. (2014). A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 71(1), 389-399. doi:10.1016/j.applthermaleng.2014.07.010 es_ES
dc.description.references Torregrosa, A., Olmeda, P., Degraeuwe, B., & Reyes, M. (2006). A concise wall temperature model for DI Diesel engines. Applied Thermal Engineering, 26(11-12), 1320-1327. doi:10.1016/j.applthermaleng.2005.10.021 es_ES
dc.description.references Broatch, A., Olmeda, P., García, A., Salvador-Iborra, J., & Warey, A. (2017). Impact of swirl on in-cylinder heat transfer in a light-duty diesel engine. Energy, 119, 1010-1023. doi:10.1016/j.energy.2016.11.040 es_ES
dc.description.references Arrègle, J., López, J. J., Guardiola, C., & Monin, C. (2010). On Board NOx Prediction in Diesel Engines: A Physical Approach. Lecture Notes in Control and Information Sciences, 25-36. doi:10.1007/978-1-84996-071-7_2 es_ES
dc.description.references Steinparzer, F., Nefischer, P., Hiemesch, D., & Rechberger, E. (2016). The New BMW Six-cylinder Top Engine with Innovative Turbocharging Concept. MTZ worldwide, 77(10), 38-45. doi:10.1007/s38313-016-0104-4 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem