- -

Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Carpio-Garay, Edison Fernando es_ES
dc.contributor.author Gómez García, Juan Francisco es_ES
dc.contributor.author Sebastian, Rafael es_ES
dc.contributor.author López-Pérez, Alejandro Daniel es_ES
dc.contributor.author Castellanos, Eduardo es_ES
dc.contributor.author Almendral, Jesús es_ES
dc.contributor.author Ferrero De Loma-Osorio, José María es_ES
dc.contributor.author Trenor Gomis, Beatriz Ana es_ES
dc.date.accessioned 2020-06-06T03:33:15Z
dc.date.available 2020-06-06T03:33:15Z
dc.date.issued 2019-02-11 es_ES
dc.identifier.issn 1664-042X es_ES
dc.identifier.uri http://hdl.handle.net/10251/145564
dc.description.abstract [EN] Patients suffering from heart failure and left bundle branch block show electrical ventricular dyssynchrony causing an abnormal blood pumping. Cardiac resynchronization therapy (CRT) is recommended for these patients. Patients with positive therapy response normally present QRS shortening and an increased left ventricle (LV) ejection fraction. However, around one third do not respond favorably. Therefore, optimal location of pacing leads, timing delays between leads and/or choosing related biomarkers is crucial to achieve the best possible degree of ventricular synchrony during CRT application. In this study, computational modeling is used to predict the optimal location and delay of pacing leads to improve CRT response. We use a 3D electrophysiological computational model of the heart and torso to get insight into the changes in the activation patterns obtained when the heart is paced from different regions and for different atrioventricular and interventricular delays. The model represents a heart with left bundle branch block and heart failure, and allows a detailed and accurate analysis of the electrical changes observed simultaneously in the myocardium and in the QRS complex computed in the precordial leads. Computational simulations were performed using a modified version of the O'Hara et al. action potential model, the most recent mathematical model developed for human ventricular electrophysiology. The optimal location for the pacing leads was determined by QRS maximal reduction. Additionally, the influence of Purkinje system on CRT response was assessed and correlation analysis between several parameters of the QRS was made. Simulation results showed that the right ventricle (RV) upper septum near the outflow tract is an alternative location to the RV apical lead. Furthermore, LV endocardial pacing provided better results as compared to epicardial stimulation. Finally, the time to reach the 90% of the QRS area was a good predictor of the instant at which 90% of the ventricular tissue was activated. Thus, the time to reach the 90% of the QRS area is suggested as an additional index to assess CRT effectiveness to improve biventricular synchrony. es_ES
dc.description.sponsorship This work was supported by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador CIBAE-023-2014, the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016 from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by Dirección General de Política Científica de la Generalitat Valenciana (PROMETEU 2016/088). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Physiology es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Cardiac resynchronization therapy es_ES
dc.subject Heart failure es_ES
dc.subject LBBB es_ES
dc.subject Computational modeling es_ES
dc.subject QRS duration es_ES
dc.subject Optimization es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fphys.2019.00074 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/SENESCYT//CIBAE-023-2014/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F088/ES/MODELOS COMPUTACIONALES PERSONALIZADOS MULTI-ESCALA PARA LA OPTIMIZACION DEL DIAGNOSTICO Y TRATAMIENTO DE ARRITMIAS CARDIACAS (PERSONALISED DIGITAL HEART)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-75799-R/ES/TECNOLOGIAS COMPUTACIONALES PARA LA OPTIMIZACION DE TERAPIAS PERSONALIZADAS DE PATOLOGIAS AURICULARES Y VENTRICULARES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Carpio-Garay, EF.; Gómez García, JF.; Sebastian, R.; López-Pérez, AD.; Castellanos, E.; Almendral, J.; Ferrero De Loma-Osorio, JM.... (2019). Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study. Frontiers in Physiology. 10:1-17. https://doi.org/10.3389/fphys.2019.00074 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fphys.2019.00074 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 17 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.pmid 30804805 es_ES
dc.identifier.pmcid PMC6378298 es_ES
dc.relation.pasarela S\380775 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Secretaría de Educación Superior, Ciencia, Tecnología e Innovación, Ecuador es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., … Messenger, J. (2002). Cardiac Resynchronization in Chronic Heart Failure. New England Journal of Medicine, 346(24), 1845-1853. doi:10.1056/nejmoa013168 es_ES
dc.description.references Abraham, W. T., Gras, D., Yu, C. M., Guzzo, L., & Gupta, M. S. (2010). Rationale and design of a randomized clinical trial to assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy: The Frequent Optimization Study Using the QuickOpt Method (FREEDOM) trial. American Heart Journal, 159(6), 944-948.e1. doi:10.1016/j.ahj.2010.02.034 es_ES
dc.description.references Ai, X., & Pogwizd, S. M. (2005). Connexin 43 Downregulation and Dephosphorylation in Nonischemic Heart Failure Is Associated With Enhanced Colocalized Protein Phosphatase Type 2A. Circulation Research, 96(1), 54-63. doi:10.1161/01.res.0000152325.07495.5a es_ES
dc.description.references Akar, F. G., Nass, R. D., Hahn, S., Cingolani, E., Shah, M., Hesketh, G. G., … Tomaselli, G. F. (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 293(2), H1223-H1230. doi:10.1152/ajpheart.00079.2007 es_ES
dc.description.references ARBELO, E., TOLOSANA, J. M., TRUCCO, E., PENELA, D., BORRÀS, R., DOLTRA, A., … MONT, L. (2013). Fusion-Optimized Intervals (FOI): A New Method to Achieve the Narrowest QRS for Optimization of the AV and VV Intervals in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 25(3), 283-292. doi:10.1111/jce.12322 es_ES
dc.description.references Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., … Klein, H. (2004). Characterization of Left Ventricular Activation in Patients With Heart Failure and Left Bundle-Branch Block. Circulation, 109(9), 1133-1139. doi:10.1161/01.cir.0000118502.91105.f6 es_ES
dc.description.references Auricchio, A., Klein, H., Tockman, B., Sack, S., Stellbrink, C., Neuzner, J., … Spinelli, J. (1999). Transvenous biventricular pacing for heart failure: can the obstacles be overcome? The American Journal of Cardiology, 83(5), 136-142. doi:10.1016/s0002-9149(98)01015-7 es_ES
dc.description.references Barber, F., García-Fernández, I., Lozano, M., & Sebastian, R. (2018). Automatic estimation of Purkinje-Myocardial junction hot-spots from noisy endocardial samples: A simulation study. International Journal for Numerical Methods in Biomedical Engineering, 34(7), e2988. doi:10.1002/cnm.2988 es_ES
dc.description.references Barold, S. S., Ilercil, A., & Herweg, B. (2008). Echocardiographic optimization of the atrioventricular and interventricular intervals during cardiac resynchronization. Europace, 10(Supplement 3), iii88-iii95. doi:10.1093/europace/eun220 es_ES
dc.description.references Bertaglia, E., Migliore, F., Baritussio, A., De Simone, A., Reggiani, A., Pecora, D., … Stabile, G. (2017). Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing and Clinical Electrophysiology, 40(7), 850-856. doi:10.1111/pace.13104 es_ES
dc.description.references Bertini, M., Ziacchi, M., Biffi, M., Martignani, C., Saporito, D., Valzania, C., … Boriani, G. (2008). Interventricular Delay Interval Optimization in Cardiac Resynchronization Therapy Guided by Echocardiography Versus Guided by Electrocardiographic QRS Interval Width. The American Journal of Cardiology, 102(10), 1373-1377. doi:10.1016/j.amjcard.2008.07.015 es_ES
dc.description.references BLEEKER, G. B., SCHALIJ, M. J., MOLHOEK, S. G., VERWEY, H. F., HOLMAN, E. R., BOERSMA, E., … BAX, J. J. (2004). Relationship Between QRS Duration and Left Ventricular Dyssynchrony in Patients with End-Stage Heart Failure. Journal of Cardiovascular Electrophysiology, 15(5), 544-549. doi:10.1046/j.1540-8167.2004.03604.x es_ES
dc.description.references Bonakdar, H. R., Jorat, M. V., Fazelifar, A. F., Alizadeh, A., Givtaj, N., Sameie, N., … Haghjoo, M. (2009). Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace, 11(10), 1330-1337. doi:10.1093/europace/eup258 es_ES
dc.description.references Bordachar, P., Derval, N., Ploux, S., Garrigue, S., Ritter, P., Haissaguerre, M., & Jaïs, P. (2010). Left Ventricular Endocardial Stimulation for Severe Heart Failure. Journal of the American College of Cardiology, 56(10), 747-753. doi:10.1016/j.jacc.2010.04.038 es_ES
dc.description.references Boukens, B. J., Rivaud, M. R., Rentschler, S., & Coronel, R. (2014). Misinterpretation of the mouse ECG: ‘musing the waves ofMus musculus’. The Journal of Physiology, 592(21), 4613-4626. doi:10.1113/jphysiol.2014.279380 es_ES
dc.description.references Bradley, C. P., Pullan, A. J., & Hunter, P. J. (1997). Geometric modeling of the human torso using cubic hermite elements. Annals of Biomedical Engineering, 25(1), 96-111. doi:10.1007/bf02738542 es_ES
dc.description.references 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. (2013). European Heart Journal, 34(29), 2281-2329. doi:10.1093/eurheartj/eht150 es_ES
dc.description.references Brugada, J., Brachmann, J., Delnoy, P. P., Padeletti, L., Reynolds, D., Ritter, P., … Singh, J. P. (2014). Automatic Optimization of Cardiac Resynchronization Therapy Using SonR—Rationale and Design of the Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) Trial. American Heart Journal, 167(4), 429-436. doi:10.1016/j.ahj.2013.12.007 es_ES
dc.description.references Cano, O., Osca, J., Sancho-Tello, M.-J., Sánchez, J. M., Ortiz, V., Castro, J. E., … Olagüe, J. (2010). Comparison of Effectiveness of Right Ventricular Septal Pacing Versus Right Ventricular Apical Pacing. The American Journal of Cardiology, 105(10), 1426-1432. doi:10.1016/j.amjcard.2010.01.004 es_ES
dc.description.references Cazeau, S., Leclercq, C., Lavergne, T., Walker, S., Varma, C., Linde, C., … Daubert, J.-C. (2001). Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. New England Journal of Medicine, 344(12), 873-880. doi:10.1056/nejm200103223441202 es_ES
dc.description.references Chung, E. S., Leon, A. R., Tavazzi, L., Sun, J.-P., Nihoyannopoulos, P., Merlino, J., … Murillo, J. (2008). Results of the Predictors of Response to CRT (PROSPECT) Trial. Circulation, 117(20), 2608-2616. doi:10.1161/circulationaha.107.743120 es_ES
dc.description.references ClelandJ. G. F. DaubertJ.-C. ErdmannE. FreemantleN. GrasD. KappenbergerL. The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure.2005 es_ES
dc.description.references Coppola, G., Ciaramitaro, G., Stabile, G., DOnofrio, A., Palmisano, P., Carità, P., … Corrado, E. (2016). Magnitude of QRS duration reduction after biventricular pacing identifies responders to cardiac resynchronization therapy. International Journal of Cardiology, 221, 450-455. doi:10.1016/j.ijcard.2016.06.203 es_ES
dc.description.references Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002 es_ES
dc.description.references Crozier, A., Blazevic, B., Lamata, P., Plank, G., Ginks, M., Duckett, S., … Niederer, S. A. (2016). The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study. Journal of Molecular and Cellular Cardiology, 96, 93-100. doi:10.1016/j.yjmcc.2015.10.026 es_ES
dc.description.references Da Costa, A., Gabriel, L., Romeyer-Bouchard, C., Géraldine, B., Gate-Martinet, A., Laurence, B., … Isaaz, K. (2013). Focus on right ventricular outflow tract septal pacing. Archives of Cardiovascular Diseases, 106(6-7), 394-403. doi:10.1016/j.acvd.2012.08.005 es_ES
dc.description.references De Pooter, J., El Haddad, M., Timmers, L., Van Heuverswyn, F., Jordaens, L., Duytschaever, M., & Stroobandt, R. (2015). Different Methods to Measure QRS Duration in CRT Patients: Impact on the Predictive Value of QRS Duration Parameters. Annals of Noninvasive Electrocardiology, 21(3), 305-315. doi:10.1111/anec.12313 es_ES
dc.description.references Derval, N., Steendijk, P., Gula, L. J., Deplagne, A., Laborderie, J., Sacher, F., … Jaïs, P. (2010). Optimizing Hemodynamics in Heart Failure Patients by Systematic Screening of Left Ventricular Pacing Sites. Journal of the American College of Cardiology, 55(6), 566-575. doi:10.1016/j.jacc.2009.08.045 es_ES
dc.description.references DeskR. WilliamsL. HealthK. Characteristics and Distribution of M Cells in Arterially.1998 es_ES
dc.description.references Dou, J., Xia, L., Deng, D., Zang, Y., Shou, G., Bustos, C., … Crozier, S. (2012). A Study of Mechanical Optimization Strategy for Cardiac Resynchronization Therapy Based on an Electromechanical Model. Computational and Mathematical Methods in Medicine, 2012, 1-13. doi:10.1155/2012/948781 es_ES
dc.description.references DURRER, D., VAN DAM, R. T., FREUD, G. E., JANSE, M. J., MEIJLER, F. L., & ARZBAECHER, R. C. (1970). Total Excitation of the Isolated Human Heart. Circulation, 41(6), 899-912. doi:10.1161/01.cir.41.6.899 es_ES
dc.description.references Dutta, S., Mincholé, A., Quinn, T. A., & Rodriguez, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40-52. doi:10.1016/j.pbiomolbio.2017.02.007 es_ES
dc.description.references Elhakam Elzoghby, I. A., Attia, I., Azab, A. E., & Hammouda, M. (2017). Impact of Cardiac Resynchronization Therapy on Heart Failure Patients: Experience from One Center. Archives of Medicine, 09(04). doi:10.21767/1989-5216.1000232 es_ES
dc.description.references Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573 es_ES
dc.description.references FLEVARI, P., LEFTHERIOTIS, D., FOUNTOULAKI, K., PANOU, F., RIGOPOULOS, A. G., PARASKEVAIDIS, I., & KREMASTINOS, D. T. (2009). Long-Term Nonoutflow Septal Versus Apical Right Ventricular Pacing: Relation to Left Ventricular Dyssynchrony. Pacing and Clinical Electrophysiology, 32(3), 354-362. doi:10.1111/j.1540-8159.2008.02244.x es_ES
dc.description.references GRAS, D., GUPTA, M. S., BOULOGNE, E., GUZZO, L., & ABRAHAM, W. T. (2009). Optimization of AV and VV Delays in the Real-World CRT Patient Population: An International Survey on Current Clinical Practice. Pacing and Clinical Electrophysiology, 32, S236-S239. doi:10.1111/j.1540-8159.2008.02294.x es_ES
dc.description.references Greenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E., & Anderson, R. H. (1981). Left ventricular fibre architecture in man. Heart, 45(3), 248-263. doi:10.1136/hrt.45.3.248 es_ES
dc.description.references Guo, T., Li, R., Zhang, L., Luo, Z., Zhao, L., Yang, J., … Hua, B. (2015). Biventricular Pacing With Ventricular Fusion by Intrinsic Activation in Cardiac Resynchronization Therapy. International Heart Journal, 56(3), 293-297. doi:10.1536/ihj.14-260 es_ES
dc.description.references Gurev, V., Constantino, J., Rice, J. J., & Trayanova, N. A. (2010). Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model. Biophysical Journal, 99(3), 745-754. doi:10.1016/j.bpj.2010.05.028 es_ES
dc.description.references Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2 es_ES
dc.description.references Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., & Ellenbogen, K. A. (2017). A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Canadian Journal of Cardiology, 33(12), 1736.e1-1736.e3. doi:10.1016/j.cjca.2017.09.013 es_ES
dc.description.references Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485 es_ES
dc.description.references Krum, H., Lemke, B., Birnie, D., Lee, K. L.-F., Aonuma, K., Starling, R. C., … Martin, D. (2012). A novel algorithm for individualized cardiac resynchronization therapy: Rationale and design of the adaptive cardiac resynchronization therapy trial. American Heart Journal, 163(5), 747-752.e1. doi:10.1016/j.ahj.2012.02.007 es_ES
dc.description.references Leclercq, C., Sadoul, N., Mont, L., Defaye, P., Osca, J., Mouton, E., … Fernandez-Lozano, I. (2015). Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. European Heart Journal, 37(5), 473-483. doi:10.1093/eurheartj/ehv422 es_ES
dc.description.references LEE, A. W. C., CROZIER, A., HYDE, E. R., LAMATA, P., TRUONG, M., SOHAL, M., … NIEDERER, S. (2017). Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 28(2), 208-215. doi:10.1111/jce.13134 es_ES
dc.description.references Lee, A. W. C., Costa, C. M., Strocchi, M., Rinaldi, C. A., & Niederer, S. A. (2018). Computational Modeling for Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 11(2), 92-108. doi:10.1007/s12265-017-9779-4 es_ES
dc.description.references Lee, H., Park, J.-H., Seo, I., Park, S.-H., & Kim, S. (2014). Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Developmental Biology, 14(1). doi:10.1186/s12861-014-0048-3 es_ES
dc.description.references Linde, C., Ellenbogen, K., & McAlister, F. A. (2012). Cardiac resynchronization therapy (CRT): Clinical trials, guidelines, and target populations. Heart Rhythm, 9(8), S3-S13. doi:10.1016/j.hrthm.2012.04.026 es_ES
dc.description.references Lopez-Perez, A., Sebastian, R., & Ferrero, J. M. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. BioMedical Engineering OnLine, 14(1). doi:10.1186/s12938-015-0033-5 es_ES
dc.description.references Mafi Rad, M., Blaauw, Y., Dinh, T., Pison, L., Crijns, H. J., Prinzen, F. W., & Vernooy, K. (2014). Different regions of latest electrical activation during left bundle-branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electro-anatomic mapping. European Journal of Heart Failure, 16(11), 1214-1222. doi:10.1002/ejhf.178 es_ES
dc.description.references Miri, R., Graf, I. M., & Dossel, O. (2009). Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study. IEEE Transactions on Biomedical Engineering, 56(11), 2573-2582. doi:10.1109/tbme.2009.2027692 es_ES
dc.description.references Miri, R., Reumann, M., Farina, D., & Dössel, O. (2009). Concurrent optimization of timing delays and electrode positioning in biventricular pacing based on a computer heart model assuming 17 left ventricular segments. Biomedizinische Technik/Biomedical Engineering, 54(2), 55-65. doi:10.1515/bmt.2009.013 es_ES
dc.description.references Miri, R., Reumann, M., Keller, D. U. J., Farina, D., & Dossel, O. (2008). Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2008.4649513 es_ES
dc.description.references MOLHOEK, S. G., BAX, J. J., BOERSMA, E., ERVEN, L. V., BOOTSMA, M., STEENDIJK, P., … SCHALIJ, M. J. (2004). QRS Duration and Shortening to Predict Clinical Response to Cardiac Resynchronization Therapy in Patients with End‐Stage Heart Failure. Pacing and Clinical Electrophysiology, 27(3), 308-313. doi:10.1111/j.1540-8159.2004.00433.x es_ES
dc.description.references Mora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739 es_ES
dc.description.references MUTO, C., OTTAVIANO, L., CANCIELLO, M., CARRERAS, G., CALVANESE, R., ASCIONE, L., … TUCCILLO, B. (2007). Effect of Pacing the Right Ventricular Mid-Septum Tract in Patients with Permanent Atrial Fibrillation and Low Ejection Fraction. Journal of Cardiovascular Electrophysiology, 18(10), 1032-1036. doi:10.1111/j.1540-8167.2007.00914.x es_ES
dc.description.references O’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061 es_ES
dc.description.references Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003 es_ES
dc.description.references Pitzalis, M. V., Iacoviello, M., Romito, R., Massari, F., Rizzon, B., Luzzi, G., … Rizzon, P. (2002). Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. Journal of the American College of Cardiology, 40(9), 1615-1622. doi:10.1016/s0735-1097(02)02337-9 es_ES
dc.description.references Pluijmert, M., Bovendeerd, P. H. M., Lumens, J., Vernooy, K., Prinzen, F. W., & Delhaas, T. (2016). New insights from a computational model on the relation between pacing site and CRT response. EP Europace, 18(suppl_4), iv94-iv103. doi:10.1093/europace/euw355 es_ES
dc.description.references Potse, M., Dube, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425-2435. doi:10.1109/tbme.2006.880875 es_ES
dc.description.references Potse, M., Krause, D., Bacharova, L., Krause, R., Prinzen, F. W., & Auricchio, A. (2012). Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace, 14(suppl 5), v33-v39. doi:10.1093/europace/eus272 es_ES
dc.description.references Prassl, A. J., Kickinger, F., Ahammer, H., Grau, V., Schneider, J. E., Hofer, E., … Plank, G. (2009). Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems. IEEE Transactions on Biomedical Engineering, 56(5), 1318-1330. doi:10.1109/tbme.2009.2014243 es_ES
dc.description.references PRINZEN, F. W., & PESCHAR, M. (2002). Relation Between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. Pacing and Clinical Electrophysiology, 25(4), 484-498. doi:10.1046/j.1460-9592.2002.00484.x es_ES
dc.description.references Van Deursen, C., van Geldorp, I. E., Rademakers, L. M., van Hunnik, A., Kuiper, M., Klersy, C., … Prinzen, F. W. (2009). Left Ventricular Endocardial Pacing Improves Resynchronization Therapy in Canine Left Bundle-Branch Hearts. Circulation: Arrhythmia and Electrophysiology, 2(5), 580-587. doi:10.1161/circep.108.846022 es_ES
dc.description.references Prinzen, F. W., Vernooy, K., Lumens, J., & Auricchio, A. (2017). Physiology of Cardiac Pacing and Resynchronization. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, 213-248. doi:10.1016/b978-0-323-37804-8.00007-9 es_ES
dc.description.references Rickard, J., Karim, M., Baranowski, B., Cantillon, D., Spragg, D., Tang, W. H. W., … Varma, N. (2017). Effect of PR interval prolongation on long-term outcomes in patients with left bundle branch block vs non–left bundle branch block morphologies undergoing cardiac resynchronization therapy. Heart Rhythm, 14(10), 1523-1528. doi:10.1016/j.hrthm.2017.05.028 es_ES
dc.description.references Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., & Frangi, A. F. (2010). Effects of the Purkinje System and Cardiac Geometry on Biventricular Pacing: A Model Study. Annals of Biomedical Engineering, 38(4), 1388-1398. doi:10.1007/s10439-010-9926-4 es_ES
dc.description.references ROSSILLO, A., VERMA, A., SAAD, E. B., CORRADO, A., GASPARINI, G., MARROUCHE, N. F., … NATALE, A. (2004). Impact of Coronary Sinus Lead Position on Biventricular Pacing: Journal of Cardiovascular Electrophysiology, 15(10), 1120-1125. doi:10.1046/j.1540-8167.2004.04089.x es_ES
dc.description.references Roth, B. (1992). How the anisotropy of the intracellular and extracellular conductivities influences stimulation of cardiac muscle. Journal of Mathematical Biology, 30(6). doi:10.1007/bf00175610 es_ES
dc.description.references Ruschitzka, F., Abraham, W. T., Singh, J. P., Bax, J. J., Borer, J. S., Brugada, J., … Holzmeister, J. (2013). Cardiac-Resynchronization Therapy in Heart Failure with a Narrow QRS Complex. New England Journal of Medicine, 369(15), 1395-1405. doi:10.1056/nejmoa1306687 es_ES
dc.description.references Sebastian, R., Zimmerman, V., Romero, D., Sanchez-Quintana, D., & Frangi, A. F. (2013). Characterization and Modeling of the Peripheral Cardiac Conduction System. IEEE Transactions on Medical Imaging, 32(1), 45-55. doi:10.1109/tmi.2012.2221474 es_ES
dc.description.references Sebastian, R., Zimmerman, V., Sukno, F., Bijnens, B. B., & Frangi, A. F. (2009). Cardiac Modelling for Pathophysiology Research and Clinical Applications. The Need for an Automated Pipeline. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany, 2207-2210. doi:10.1007/978-3-642-03882-2_586 es_ES
dc.description.references Sicouri, S., & Antzelevitch, C. (1991). A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M cell. Circulation Research, 68(6), 1729-1741. doi:10.1161/01.res.68.6.1729 es_ES
dc.description.references SICOURI, S., FISH, J., & ANTZELEVITCH, C. (1994). Distribution of M Cells in the Canine Ventricle. Journal of Cardiovascular Electrophysiology, 5(10), 824-837. doi:10.1111/j.1540-8167.1994.tb01121.x es_ES
dc.description.references Singh, J. P., Fan, D., Heist, E. K., Alabiad, C. R., Taub, C., Reddy, V., … Mela, T. (2006). Left ventricular lead electrical delay predicts response to cardiac resynchronization therapy. Heart Rhythm, 3(11), 1285-1292. doi:10.1016/j.hrthm.2006.07.034 es_ES
dc.description.references Singh, J. P., Klein, H. U., Huang, D. T., Reek, S., Kuniss, M., Quesada, A., … Moss, A. J. (2011). Left Ventricular Lead Position and Clinical Outcome in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT) Trial. Circulation, 123(11), 1159-1166. doi:10.1161/circulationaha.110.000646 es_ES
dc.description.references Şipal, A. (2018). Surface electrogram-guided left ventricular lead placement improves response to cardiac resynchronization therapy. The Anatolian Journal of Cardiology. doi:10.14744/anatoljcardiol.2018.09216 es_ES
dc.description.references Sommer, A., Kronborg, M. B., Nørgaard, B. L., Stephansen, C., Poulsen, S. H., Kristensen, J., … Nielsen, J. C. (2018). Longer inter-lead electrical delay is associated with response to cardiac resynchronization therapy in patients with presumed optimal left ventricular lead position. EP Europace, 20(10), 1630-1637. doi:10.1093/europace/eux384 es_ES
dc.description.references Sperzel, J., Burri, H., Gras, D., Tjong, F. V. Y., Knops, R. E., Hindricks, G., … Defaye, P. (2015). State of the art of leadless pacing. Europace, 17(10), 1508-1513. doi:10.1093/europace/euv096 es_ES
dc.description.references Spragg, D. D., Dong, J., Fetics, B. J., Helm, R., Marine, J. E., Cheng, A., … Berger, R. D. (2010). Optimal Left Ventricular Endocardial Pacing Sites for Cardiac Resynchronization Therapy in Patients With Ischemic Cardiomyopathy. Journal of the American College of Cardiology, 56(10), 774-781. doi:10.1016/j.jacc.2010.06.014 es_ES
dc.description.references Stellbrink, C., Auricchio, A., Butter, C., Sack, S., Vogt, J., Böcker, D., … Ramdat-Misier, A. (2000). Pacing therapies in congestive heart failure II study. The American Journal of Cardiology, 86(9), K138-K143. doi:10.1016/s0002-9149(00)01298-4 es_ES
dc.description.references Stewart, P., Aslanidi, O. V., Noble, D., Noble, P. J., Boyett, M. R., & Zhang, H. (2009). Mathematical models of the electrical action potential of Purkinje fibre cells. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1896), 2225-2255. doi:10.1098/rsta.2008.0283 es_ES
dc.description.references Strauss, D. G., Selvester, R. H., & Wagner, G. S. (2011). Defining Left Bundle Branch Block in the Era of Cardiac Resynchronization Therapy. The American Journal of Cardiology, 107(6), 927-934. doi:10.1016/j.amjcard.2010.11.010 es_ES
dc.description.references Strik, M., van Deursen, C. J. M., van Middendorp, L. B., van Hunnik, A., Kuiper, M., Auricchio, A., & Prinzen, F. W. (2013). Transseptal Conduction as an Important Determinant for Cardiac Resynchronization Therapy, as Revealed by Extensive Electrical Mapping in the Dyssynchronous Canine Heart. Circulation: Arrhythmia and Electrophysiology, 6(4), 682-689. doi:10.1161/circep.111.000028 es_ES
dc.description.references Surawicz, B., Childers, R., Deal, B. J., & Gettes, L. S. (2009). AHA/ACCF/HRS Recommendations for the Standardization and Interpretation of the Electrocardiogram. Journal of the American College of Cardiology, 53(11), 976-981. doi:10.1016/j.jacc.2008.12.013 es_ES
dc.description.references Sweeney, M. O., Hellkamp, A. S., van Bommel, R. J., Schalij, M. J., Jan Willem Borleffs, C., & Bax, J. J. (2014). QRS fusion complex analysis using wave interference to predict reverse remodeling during cardiac resynchronization therapy. Heart Rhythm, 11(5), 806-813. doi:10.1016/j.hrthm.2014.01.021 es_ES
dc.description.references Taggart, P., Sutton, P. M., Opthof, T., Coronel, R., Trimlett, R., Pugsley, W., & Kallis, P. (2000). Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. Journal of Molecular and Cellular Cardiology, 32(4), 621-630. doi:10.1006/jmcc.2000.1105 es_ES
dc.description.references TAMBORERO, D., VIDAL, B., TOLOSANA, J. M., SITGES, M., BERRUEZO, A., SILVA, E., … MONT, L. (2011). Electrocardiographic versus Echocardiographic Optimization of the Interventricular Pacing Delay in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 22(10), 1129-1134. doi:10.1111/j.1540-8167.2011.02085.x es_ES
dc.description.references Liu, X., Tian, Y., Zhang, Y., Yan, Q., Mao, J., Dong, J., & Ma, C. (2017). Fragmented QRS complex in healthy adults: Prevalence, characteristics, mechanisms, and clinical implications. International Journal of Heart Rhythm, 2(1), 34. doi:10.4103/2352-4197.208459 es_ES
dc.description.references Park, M. Y., Altman, R. K., Orencole, M., Kumar, P., Parks, K. A., Heist, K. E., … Picard, M. H. (2012). Characteristics of Responders to Cardiac Resynchronization Therapy: The Impact of Echocardiographic Left Ventricular Volume. Clinical Cardiology, 35(12), 779-780. doi:10.1002/clc.22043 es_ES
dc.description.references Ulč, I., & Vančura, V. (2013). Optimization of pacing intervals in cardiac resynchronization therapy. Cor et Vasa, 55(5), e403-e410. doi:10.1016/j.crvasa.2013.06.001 es_ES
dc.description.references Urbanek, B., Kaczmarek, K., Klimczak, A., Ruta, J., Chudzik, M., Piestrzeniewicz, K., … Wranicz, J. (2017). Potential benefit of optimizing atrioventricular & interventricular delays in patients with cardiac resynchronization therapy. Indian Journal of Medical Research, 146(1), 71. doi:10.4103/ijmr.ijmr_1560_14 es_ES
dc.description.references Van Gelder, B. M., Bracke, F. A., Meijer, A., & Pijls, N. H. J. (2005). The Hemodynamic Effect of Intrinsic Conduction During Left Ventricular Pacing as Compared to Biventricular Pacing. Journal of the American College of Cardiology, 46(12), 2305-2310. doi:10.1016/j.jacc.2005.02.098 es_ES
dc.description.references VAN GELDER, B. M., MEIJER, A., & BRACKE, F. A. (2009). Timing of the Left Ventricular Electrogram and Acute Hemodynamic Changes During Implant of Cardiac Resynchronization Therapy Devices. Pacing and Clinical Electrophysiology, 32, S94-S97. doi:10.1111/j.1540-8159.2008.02262.x es_ES
dc.description.references Vatasescu, R., Berruezo, A., Mont, L., Tamborero, D., Sitges, M., Silva, E., … Brugada, J. (2009). Midterm «super-response» to cardiac resynchronization therapy by biventricular pacing with fusion: insights from electro-anatomical mapping. Europace, 11(12), 1675-1682. doi:10.1093/europace/eup333 es_ES
dc.description.references VICTOR, F., MABO, P., MANSOUR, H., PAVIN, D., KABALU, G., PLACE, C. D., … DAUBERT, J. C. (2006). A Randomized Comparison of Permanent Septal Versus Apical Right Ventricular Pacing: Short-Term Results. Journal of Cardiovascular Electrophysiology, 17(3), 238-242. doi:10.1111/j.1540-8167.2006.00358.x es_ES
dc.description.references Wang, Y., & Hill, J. A. (2010). Electrophysiological remodeling in heart failure. Journal of Molecular and Cellular Cardiology, 48(4), 619-632. doi:10.1016/j.yjmcc.2010.01.009 es_ES
dc.description.references Yoshikawa, H., Suzuki, M., Tezuka, N., Otsuka, T., & Sugi, K. (2010). Differences in left ventricular dyssynchrony between high septal pacing and apical pacing in patients with normal left ventricular systolic function. Journal of Cardiology, 56(1), 44-50. doi:10.1016/j.jjcc.2010.02.002 es_ES
dc.description.references Zanon, F., Baracca, E., Pastore, G., Fraccaro, C., Roncon, L., Aggio, S., … Prinzen, F. (2014). Determination of the Longest Intrapatient Left Ventricular Electrical Delay May Predict Acute Hemodynamic Improvement in Patients After Cardiac Resynchronization Therapy. Circulation: Arrhythmia and Electrophysiology, 7(3), 377-383. doi:10.1161/circep.113.000850 es_ES
dc.description.references Zareba, W., Klein, H., Cygankiewicz, I., Hall, W. J., McNitt, S., Brown, M., … Moss, A. J. (2011). Effectiveness of Cardiac Resynchronization Therapy by QRS Morphology in the Multicenter Automatic Defibrillator Implantation Trial–Cardiac Resynchronization Therapy (MADIT-CRT). Circulation, 123(10), 1061-1072. doi:10.1161/circulationaha.110.960898 es_ES
dc.description.references Zhang, J., Zhang, Y., Zhou, X., Li, J., Li, Y., Zhang, Y., … Tang, B. (2015). QRS duration shortening predicts left ventricular reverse remodelling in patients with dilated cardiomyopathy after cardiac resynchronization therapy. Acta Cardiologica, 70(3), 307-313. doi:10.1080/ac.70.3.3080635 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem