- -

Composite modular floor prototype for emergency housing applications:Experimental and analytical approach

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composite modular floor prototype for emergency housing applications:Experimental and analytical approach

Mostrar el registro completo del ítem

Abdolpour, H.; Garzón-Roca, J.; Escusa, G.; Sena-Cruz, J.; Barros, J.; Valente, I. (2018). Composite modular floor prototype for emergency housing applications:Experimental and analytical approach. Journal of Composite Materials. 52(13):1747-1764. https://doi.org/10.1177/0021998317733318

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145854

Ficheros en el ítem

Metadatos del ítem

Título: Composite modular floor prototype for emergency housing applications:Experimental and analytical approach
Autor: Abdolpour, Hassan Garzón-Roca, Julio Escusa, Gonçalo Sena-Cruz, J.M. Barros, J. Valente, Isabel
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería del Terreno - Departament d'Enginyeria del Terreny
Fecha difusión:
Resumen:
[EN] The present paper explores a new modular floor prototype to be used in emergency houses. The prototype is composed of a frame structure made of glass-fiber-reinforced polymer (GFRP) tubular pultruded profiles, a slab ...[+]
Palabras clave: Emergency house , Composite materials , GFRP pultruded profiles , Sandwich panels , GFRP skins , PU foam core
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of Composite Materials. (issn: 0021-9983 )
DOI: 10.1177/0021998317733318
Editorial:
SAGE Publications
Versión del editor: https://doi.org/10.1177/0021998317733318
Código del Proyecto:
info:eu-repo/grantAgreement/ANI//COMPETE-38967/
Agradecimientos:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work is part of the research project ClickHouse-Development of a prefabricated ...[+]
Tipo: Artículo

References

Johnson, C. (2007). Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey. Habitat International, 31(1), 36-52. doi:10.1016/j.habitatint.2006.03.002

Arslan, H., & Cosgun, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. doi:10.1016/j.buildenv.2007.01.051

Dodoo, A., & Gustavsson, L. (2013). Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply. Applied Energy, 112, 834-842. doi:10.1016/j.apenergy.2013.04.008 [+]
Johnson, C. (2007). Impacts of prefabricated temporary housing after disasters: 1999 earthquakes in Turkey. Habitat International, 31(1), 36-52. doi:10.1016/j.habitatint.2006.03.002

Arslan, H., & Cosgun, N. (2008). Reuse and recycle potentials of the temporary houses after occupancy: Example of Duzce, Turkey. Building and Environment, 43(5), 702-709. doi:10.1016/j.buildenv.2007.01.051

Dodoo, A., & Gustavsson, L. (2013). Life cycle primary energy use and carbon footprint of wood-frame conventional and passive houses with biomass-based energy supply. Applied Energy, 112, 834-842. doi:10.1016/j.apenergy.2013.04.008

Datin, P. L., & Prevatt, D. O. (2013). Using instrumented small-scale models to study structural load paths in wood-framed buildings. Engineering Structures, 54, 47-56. doi:10.1016/j.engstruct.2013.03.039

Imperadori, M., Salvalai, G., & Pusceddu, C. (2014). Air Shelter House Technology and its Application to Shelter Units: the Case of Scaffold House and Cardboard Shelter Installations. Procedia Economics and Finance, 18, 552-559. doi:10.1016/s2212-5671(14)00975-7

Ljunggren, F., & Ågren, A. (2011). Potential solutions to improved sound performance of volume based lightweight multi-storey timber buildings. Applied Acoustics, 72(4), 231-240. doi:10.1016/j.apacoust.2010.11.007

Winandy, J. E., Hunt, J. F., Turk, C., & Anderson, J. R. (2006). Emergency housing systems from three-dimensional engineered fiberboard : temporary building systems for lightweight, portable, easy-to-assemble, reusable, recyclable, and biodegradable structures. doi:10.2737/fpl-gtr-166

Kootsookos, A., & Burchill, P. . (2004). The effect of the degree of cure on the corrosion resistance of vinyl ester/glass fibre composites. Composites Part A: Applied Science and Manufacturing, 35(4), 501-508. doi:10.1016/j.compositesa.2003.08.010

Nguyen, C. H., Chandrashekhara, K., & Birman, V. (2012). Multifunctional thermal barrier coating in aerospace sandwich panels. Mechanics Research Communications, 39(1), 35-43. doi:10.1016/j.mechrescom.2011.10.003

Allard, J. F., & Atalla, N. (2009). Propagation of Sound in Porous Media. doi:10.1002/9780470747339

Sousa, J. M., Correia, J. R., Cabral-Fonseca, S., & Diogo, A. C. (2014). Effects of thermal cycles on the mechanical response of pultruded GFRP profiles used in civil engineering applications. Composite Structures, 116, 720-731. doi:10.1016/j.compstruct.2014.06.008

Correia, J. R., Cabral-Fonseca, S., Branco, F. A., Ferreira, J. G., Eusébio, M. I., & Rodrigues, M. P. (2006). Durability of pultruded glass-fiber-reinforced polyester profiles for structural applications. Mechanics of Composite Materials, 42(4), 325-338. doi:10.1007/s11029-006-0042-3

Rizkalla, S., Lucier, G., & Dawood, M. (2012). Innovative Use of FRP for the Precast Concrete Industry. Advances in Structural Engineering, 15(4), 565-574. doi:10.1260/1369-4332.15.4.565

Oppe, M. W., & Knippers, J. (2011). Application of bolted connections in fibre-reinforced polymers. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 164(5), 321-332. doi:10.1680/stbu.2011.164.5.321

Shawkat, W., Honickman, H., & Fam, A. (2008). Investigation of a Novel Composite Cladding Wall Panel in Flexure. Journal of Composite Materials, 42(3), 315-330. doi:10.1177/0021998307087965

Sharaf, T., Shawkat, W., & Fam, A. (2010). Structural Performance of Sandwich Wall Panels with Different Foam Core Densities in One-way Bending. Journal of Composite Materials, 44(19), 2249-2263. doi:10.1177/0021998310369577

Correia, J. R., Garrido, M., Gonilha, J. A., Branco, F. A., & Reis, L. G. (2012). GFRP sandwich panels with PU foam and PP honeycomb cores for civil engineering structural applications. International Journal of Structural Integrity, 3(2), 127-147. doi:10.1108/17579861211235165

Keller, T., Haas, C., & Vallée, T. (2008). Structural Concept, Design, and Experimental Verification of a Glass Fiber-Reinforced Polymer Sandwich Roof Structure. Journal of Composites for Construction, 12(4), 454-468. doi:10.1061/(asce)1090-0268(2008)12:4(454)

Mousa, M. A., & Uddin, N. (2011). Global buckling of composite structural insulated wall panels. Materials & Design, 32(2), 766-772. doi:10.1016/j.matdes.2010.07.026

Garrido, M., Correia, J. R., Keller, T., & Branco, F. A. (2015). Adhesively bonded connections between composite sandwich floor panels for building rehabilitation. Composite Structures, 134, 255-268. doi:10.1016/j.compstruct.2015.08.080

Zenkert, D., Shipsha, A., & Persson, K. (2004). Static indentation and unloading response of sandwich beams. Composites Part B: Engineering, 35(6-8), 511-522. doi:10.1016/j.compositesb.2003.09.006

Petras, A., & Sutcliffe, M. P. F. (1999). Indentation resistance of sandwich beams. Composite Structures, 46(4), 413-424. doi:10.1016/s0263-8223(99)00109-9

Rizov, V., Shipsha, A., & Zenkert, D. (2005). Indentation study of foam core sandwich composite panels. Composite Structures, 69(1), 95-102. doi:10.1016/j.compstruct.2004.05.013

Petras, A., & Sutcliffe, M. P. . (2000). Indentation failure analysis of sandwich beams. Composite Structures, 50(3), 311-318. doi:10.1016/s0263-8223(00)00122-7

Borsellino, C., Calabrese, L., & Valenza, A. (2004). Experimental and numerical evaluation of sandwich composite structures. Composites Science and Technology, 64(10-11), 1709-1715. doi:10.1016/j.compscitech.2004.01.003

Fam, A., & Sharaf, T. (2010). Flexural performance of sandwich panels comprising polyurethane core and GFRP skins and ribs of various configurations. Composite Structures, 92(12), 2927-2935. doi:10.1016/j.compstruct.2010.05.004

Carlsson, L. A., & Kardomateas, G. A. (2011). Structural and Failure Mechanics of Sandwich Composites. Solid Mechanics and Its Applications. doi:10.1007/978-1-4020-3225-7

Eskandari, H. (2003). The effect of shear deformation on material selection for bending components. Materials & Design, 24(2), 143-149. doi:10.1016/s0261-3069(02)00125-5

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem