- -

Composition and physicochemical properties of dried berry pomace

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Composition and physicochemical properties of dried berry pomace

Mostrar el registro completo del ítem

Reibner, AM.; Al Hamimi, S.; Quiles Chuliá, MD.; Schmidt, C.; Struck, S.; Hernando Hernando, MI.; Turner, C.... (2018). Composition and physicochemical properties of dried berry pomace. Journal of the Science of Food and Agriculture. 99(3):1284-1293. https://doi.org/10.1002/jsfa.9302

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/145991

Ficheros en el ítem

Metadatos del ítem

Título: Composition and physicochemical properties of dried berry pomace
Autor: Reibner, Anne Marie Al Hamimi, Said Quiles Chuliá, Mª Desamparados Schmidt, Carolin Struck, S. Hernando Hernando, Mª Isabel Turner, Charlotta Rohm, H.
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Fecha difusión:
Resumen:
[EN] BACKGROUND Berry pomace is a valuable but little used by-product of juice manufacturing. When processed to a stable fruit powder, the composition differs from that of the whole fruit. To facilitate application in ...[+]
Palabras clave: Berry pomace , Sustainability , Dietary fibre , Technofunctional properties , Polyphenols , Vapour sorption
Derechos de uso: Reserva de todos los derechos
Fuente:
Journal of the Science of Food and Agriculture. (issn: 0022-5142 )
DOI: 10.1002/jsfa.9302
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/jsfa.9302
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/291766/EU/Sustainable Food/
info:eu-repo/grantAgreement/BMBF//031B0004/
Agradecimientos:
The research project was approved during the second SUSFOOD ERA-Net call (www.susfood-era.net).The funding of the project, assured through the national partner organizations, is gratefully acknowledged: Federal Ministry ...[+]
Tipo: Artículo

References

Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. doi:10.1016/j.foodchem.2010.06.077

Ktenioudaki, A., & Gallagher, E. (2012). Recent advances in the development of high-fibre baked products. Trends in Food Science & Technology, 28(1), 4-14. doi:10.1016/j.tifs.2012.06.004

McKee, L. H., & Latner, T. A. (2000). Plant Foods for Human Nutrition, 55(4), 285-304. doi:10.1023/a:1008144310986 [+]
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411-421. doi:10.1016/j.foodchem.2010.06.077

Ktenioudaki, A., & Gallagher, E. (2012). Recent advances in the development of high-fibre baked products. Trends in Food Science & Technology, 28(1), 4-14. doi:10.1016/j.tifs.2012.06.004

McKee, L. H., & Latner, T. A. (2000). Plant Foods for Human Nutrition, 55(4), 285-304. doi:10.1023/a:1008144310986

Dhillon, G. S., Kaur, S., & Brar, S. K. (2013). Perspective of apple processing wastes as low-cost substrates for bioproduction of high value products: A review. Renewable and Sustainable Energy Reviews, 27, 789-805. doi:10.1016/j.rser.2013.06.046

Kohajdová, Z., Karovičová, J., & Jurasová, M. (2013). Influence of grapefruit dietary fibre rich powder on the rheological characteristics of wheat flour dough and on biscuit quality. Acta Alimentaria, 42(1), 91-101. doi:10.1556/aalim.42.2013.1.9

Struck, S., Plaza, M., Turner, C., & Rohm, H. (2016). Berry pomace - a review of processing and chemical analysis of its polyphenols. International Journal of Food Science & Technology, 51(6), 1305-1318. doi:10.1111/ijfs.13112

Skrede, G., Wrolstad, R. E., & Durst, R. W. (2000). Changes in Anthocyanins and Polyphenolics During Juice Processing of Highbush Blueberries (Vaccinium corymbosum L.). Journal of Food Science, 65(2), 357-364. doi:10.1111/j.1365-2621.2000.tb16007.x

Holtung, L., Grimmer, S., & Aaby, K. (2011). Effect of Processing of Black Currant Press-Residue on Polyphenol Composition and Cell Proliferation. Journal of Agricultural and Food Chemistry, 59(8), 3632-3640. doi:10.1021/jf104427r

Oszmiański, J., & Wojdylo, A. (2005). Aronia melanocarpa phenolics and their antioxidant activity. European Food Research and Technology, 221(6), 809-813. doi:10.1007/s00217-005-0002-5

Viuda-Martos, M., López-Marcos, M. C., Fernández-López, J., Sendra, E., López-Vargas, J. H., & Pérez-Álvarez, J. A. (2010). Role of Fiber in Cardiovascular Diseases: A Review. Comprehensive Reviews in Food Science and Food Safety, 9(2), 240-258. doi:10.1111/j.1541-4337.2009.00102.x

Eim, V. S., Simal, S., Rosselló, C., & Femenia, A. (2008). Effects of addition of carrot dietary fibre on the ripening process of a dry fermented sausage (sobrassada). Meat Science, 80(2), 173-182. doi:10.1016/j.meatsci.2007.11.017

Sójka, M., Miszczak, A., Sikorski, P., Zagibajło, K., Karlińska, E., & Kosmala, M. (2015). Pesticide residue levels in strawberry processing by-products that are rich in ellagitannins and an assessment of their dietary risk to consumers. NFS Journal, 1, 31-37. doi:10.1016/j.nfs.2015.09.001

European Commission EU pesticides database http://ec.europa.eu/food

Ortelli, D., Edder, P., & Corvi, C. (2004). Multiresidue analysis of 74 pesticides in fruits and vegetables by liquid chromatography–electrospray–tandem mass spectrometry. Analytica Chimica Acta, 520(1-2), 33-45. doi:10.1016/j.aca.2004.03.037

Rohm, H., Brennan, C., Turner, C., Günther, E., Campbell, G., Hernando, I., … Kontogiorgos, V. (2015). Adding Value to Fruit Processing Waste: Innovative Ways to Incorporate Fibers from Berry Pomace in Baked and Extruded Cereal-based Foods—A SUSFOOD Project. Foods, 4(4), 690-697. doi:10.3390/foods4040690

Schmidt, C., Geweke, I., Struck, S., Zahn, S., & Rohm, H. (2017). Blackcurrant pomace from juice processing as partial flour substitute in savoury crackers: dough characteristics and product properties. International Journal of Food Science & Technology, 53(1), 237-245. doi:10.1111/ijfs.13639

Tarrega, A., Quiles, A., Morell, P., Fiszman, S., & Hernando, I. (2017). Importance of consumer perceptions in fiber-enriched food products. A case study with sponge cakes. Food & Function, 8(2), 574-583. doi:10.1039/c6fo01022a

Šporin, M., Avbelj, M., Kovač, B., & Možina, S. S. (2017). Quality characteristics of wheat flour dough and bread containing grape pomace flour. Food Science and Technology International, 24(3), 251-263. doi:10.1177/1082013217745398

Choi, Y.-S., Kim, Y.-B., Hwang, K.-E., Song, D.-H., Ham, Y.-K., Kim, H.-W., … Kim, C.-J. (2016). Effect of apple pomace fiber and pork fat levels on quality characteristics of uncured, reduced-fat chicken sausages. Poultry Science, 95(6), 1465-1471. doi:10.3382/ps/pew096

Hilz, H., Bakx, E. J., Schols, H. A., & Voragen, A. G. J. (2005). Cell wall polysaccharides in black currants and bilberries—characterisation in berries, juice, and press cake. Carbohydrate Polymers, 59(4), 477-488. doi:10.1016/j.carbpol.2004.11.002

Tournas, V. H., & Katsoudas, E. (2005). Mould and yeast flora in fresh berries, grapes and citrus fruits. International Journal of Food Microbiology, 105(1), 11-17. doi:10.1016/j.ijfoodmicro.2005.05.002

Sivam, A. S., Sun-Waterhouse, D., Perera, C. O., & Waterhouse, G. I. N. (2012). Exploring the interactions between blackcurrant polyphenols, pectin and wheat biopolymers in model breads; a FTIR and HPLC investigation. Food Chemistry, 131(3), 802-810. doi:10.1016/j.foodchem.2011.09.047

Plaza, M., Abrahamsson, V., & Turner, C. (2013). Extraction and Neoformation of Antioxidant Compounds by Pressurized Hot Water Extraction from Apple Byproducts. Journal of Agricultural and Food Chemistry, 61(23), 5500-5510. doi:10.1021/jf400584f

Hernández-Carrión, M., Sanz, T., Hernando, I., Llorca, E., Fiszman, S. M., & Quiles, A. (2015). New formulations of functional white sauces enriched with red sweet pepper: a rheological, microstructural and sensory study. European Food Research and Technology, 240(6), 1187-1202. doi:10.1007/s00217-015-2422-1

Rohm, H., & Jaros, D. (1996). Colour of hard cheese. Zeitschrift f�r Lebensmittel-Untersuchung und -Forschung, 203(3), 241-244. doi:10.1007/bf01192871

Mutungi, C., Schuldt, S., Onyango, C., Schneider, Y., Jaros, D., & Rohm, H. (2011). Dynamic Moisture Sorption Characteristics of Enzyme-Resistant Recrystallized Cassava Starch. Biomacromolecules, 12(3), 660-671. doi:10.1021/bm101321q

Zahn, S., Forker, A., Krügel, L., & Rohm, H. (2013). Combined use of rebaudioside A and fibres for partial sucrose replacement in muffins. LWT - Food Science and Technology, 50(2), 695-701. doi:10.1016/j.lwt.2012.07.026

Robertson, J. A., de Monredon, F. D., Dysseler, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration Properties of Dietary Fibre and Resistant Starch: a European Collaborative Study. LWT - Food Science and Technology, 33(2), 72-79. doi:10.1006/fstl.1999.0595

Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72(3), 281-286. doi:10.1016/j.jfoodeng.2004.12.008

Vagiri, M., & Jensen, M. (2017). Influence of juice processing factors on quality of black chokeberry pomace as a future resource for colour extraction. Food Chemistry, 217, 409-417. doi:10.1016/j.foodchem.2016.08.121

Sójka, M., & Król, B. (2008). Composition of industrial seedless black currant pomace. European Food Research and Technology, 228(4), 597-605. doi:10.1007/s00217-008-0968-x

Sójka, M., Kołodziejczyk, K., & Milala, J. (2013). Polyphenolic and basic chemical composition of black chokeberry industrial by-products. Industrial Crops and Products, 51, 77-86. doi:10.1016/j.indcrop.2013.08.051

U.S. Department of Agriculture, Agricultural Research Service USDA National Nutrient Database for Standard Reference https://www.ars.usda.gov/

National Institute for Health and Welfare, Fineli Finnish food composition database https://fineli.fi/fineli/en/index

Wawer, I., Wolniak, M., & Paradowska, K. (2006). Solid state NMR study of dietary fiber powders from aronia, bilberry, black currant and apple. Solid State Nuclear Magnetic Resonance, 30(2), 106-113. doi:10.1016/j.ssnmr.2006.05.001

German Society for Hygiene and Microbiology Mikrobiologische Richt- und Warnwerte zur Beurteilung von Lebensmitteln https://www.dghm-richt-warnwerte.de/de

Fazaeli, M., Emam-Djomeh, Z., Kalbasi Ashtari, A., & Omid, M. (2012). Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing, 90(4), 667-675. doi:10.1016/j.fbp.2012.04.006

Margraf, T., Karnopp, A. R., Rosso, N. D., & Granato, D. (2015). Comparison between Folin-Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96-Well Microplates. Journal of Food Science, 80(11), C2397-C2403. doi:10.1111/1750-3841.13077

Sajewicz, M., Staszek, D., Wróbel, M. S., Waksmundzka-Hajnos, M., & Kowalska, T. (2012). The HPLC/DAD Fingerprints and Chemometric Analysis of Flavonoid Extracts from the Selected Sage (Salvia) Species. Chromatography Research International, 2012, 1-8. doi:10.1155/2012/230903

Ćujić, N., Savikin, K., Miloradovic, Z., Ivanov, M., Vajic, U.-J., Karanovic, D., … Mihailovic-Stanojevic, N. (2018). Characterization of dried chokeberry fruit extract and its chronic effects on blood pressure and oxidative stress in spontaneously hypertensive rats. Journal of Functional Foods, 44, 330-339. doi:10.1016/j.jff.2018.02.027

Gavrilova, V., Kajdžanoska, M., Gjamovski, V., & Stefova, M. (2011). Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC−DAD−ESI-MSn. Journal of Agricultural and Food Chemistry, 59(8), 4009-4018. doi:10.1021/jf104565y

Bochi, V. C., Godoy, H. T., & Giusti, M. M. (2015). Anthocyanin and other phenolic compounds in Ceylon gooseberry (Dovyalis hebecarpa) fruits. Food Chemistry, 176, 234-243. doi:10.1016/j.foodchem.2014.12.041

Kylli, P., Nohynek, L., Puupponen-Pimiä, R., Westerlund-Wikström, B., McDougall, G., Stewart, D., & Heinonen, M. (2010). Rowanberry Phenolics: Compositional Analysis and Bioactivities. Journal of Agricultural and Food Chemistry, 58(22), 11985-11992. doi:10.1021/jf102739v

Bräunlich, M., Slimestad, R., Wangensteen, H., Brede, C., Malterud, K., & Barsett, H. (2013). Extracts, Anthocyanins and Procyanidins from Aronia melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients, 5(3), 663-678. doi:10.3390/nu5030663

Nakajima, J., Tanaka, I., Seo, S., Yamazaki, M., & Saito, K. (2004). LC/PDA/ESI-MS Profiling and Radical Scavenging Activity of Anthocyanins in Various Berries. Journal of Biomedicine and Biotechnology, 2004(5), 241-247. doi:10.1155/s1110724304404045

Borges, G., Degeneve, A., Mullen, W., & Crozier, A. (2010). Identification of Flavonoid and Phenolic Antioxidants in Black Currants, Blueberries, Raspberries, Red Currants, and Cranberries†. Journal of Agricultural and Food Chemistry, 58(7), 3901-3909. doi:10.1021/jf902263n

Laroze, L. E., Díaz-Reinoso, B., Moure, A., Zúñiga, M. E., & Domínguez, H. (2010). Extraction of antioxidants from several berries pressing wastes using conventional and supercritical solvents. European Food Research and Technology, 231(5), 669-677. doi:10.1007/s00217-010-1320-9

Rakic, V., Ota, A., Skrt, M., Miljkovic, M., Kostic, D., Sokolovic, D., & Poklar-Ulrih, N. (2015). Investigation of fluorescence properties of cyanidin and cyanidin 3-o-β-glucopyranoside. Hemijska industrija, 69(2), 155-163. doi:10.2298/hemind140203030r

Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218(6), 563-567. doi:10.1007/s00217-004-0889-2

Kosmala, M., Kołodziejczyk, K., Markowski, J., Mieszczakowska, M., Ginies, C., & Renard, C. M. G. C. (2010). Co-products of black-currant and apple juice production: Hydration properties and polysaccharide composition. LWT - Food Science and Technology, 43(1), 173-180. doi:10.1016/j.lwt.2009.06.016

Guillon, F., & Champ, M. (2000). Structural and physical properties of dietary fibres, and consequences of processing on human physiology. Food Research International, 33(3-4), 233-245. doi:10.1016/s0963-9969(00)00038-7

Rosell, C. M., Santos, E., & Collar, C. (2009). Physico-chemical properties of commercial fibres from different sources: A comparative approach. Food Research International, 42(1), 176-184. doi:10.1016/j.foodres.2008.10.003

Yalegama, L. L. W. C., Nedra Karunaratne, D., Sivakanesan, R., & Jayasekara, C. (2013). Chemical and functional properties of fibre concentrates obtained from by-products of coconut kernel. Food Chemistry, 141(1), 124-130. doi:10.1016/j.foodchem.2013.02.118

Selani, M. M., Brazaca, S. G. C., dos Santos Dias, C. T., Ratnayake, W. S., Flores, R. A., & Bianchini, A. (2014). Characterisation and potential application of pineapple pomace in an extruded product for fibre enhancement. Food Chemistry, 163, 23-30. doi:10.1016/j.foodchem.2014.04.076

Figuerola, F., Hurtado, M. L., Estévez, A. M., Chiffelle, I., & Asenjo, F. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chemistry, 91(3), 395-401. doi:10.1016/j.foodchem.2004.04.036

Kohajdová, Z., Karovičová, J., Magala, M., & Kuchtová, V. (2014). Effect of apple pomace powder addition on farinographic properties of wheat dough and biscuits quality. Chemical Papers, 68(8). doi:10.2478/s11696-014-0567-1

CHEN, J. Y., PIVA, M., & LABUZA, T. P. (1984). Evaluation of Water Binding Capacity (WBC) of Food Fiber Sources. Journal of Food Science, 49(1), 59-63. doi:10.1111/j.1365-2621.1984.tb13668.x

Timmermann, E. O. (1989). A B. E. T.-like three sorption stage isotherm. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 85(7), 1631. doi:10.1039/f19898501631

Witczak, T., Witczak, M., Socha, R., StĘPień, A., & Grzesik, M. (2016). Candied Orange Peel Produced in Solutions with Various Sugar Compositions: Sugar Composition and Sorption Properties of the Product. Journal of Food Process Engineering, 40(2), e12367. doi:10.1111/jfpe.12367

Tsami, E., Krokida, M. K., & Drouzas, A. E. (1998). Effect of drying method on the sorption characteristics of model fruit powders. Journal of Food Engineering, 38(4), 381-392. doi:10.1016/s0260-8774(98)00130-7

Oliveira, D. E. C. de, Resende, O., Costa, L. M., Ferreira Júnior, W. N., & Igor O. F., S. (2017). Hygroscopicity of baru (Dipteryx alata Vogel) fruit. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(4), 279-284. doi:10.1590/1807-1929/agriambi.v21n4p279-284

Ribeiro, L. C., Costa, J. M. C. da, & Afonso, M. R. A. (2016). Hygroscopic behavior of lyophilized acerola pulp powder. Revista Brasileira de Engenharia Agrícola e Ambiental, 20(3), 269-274. doi:10.1590/1807-1929/agriambi.v20n3p269-274

Struck, S., Straube, D., Zahn, S., & Rohm, H. (2018). Interaction of wheat macromolecules and berry pomace in model dough: Rheology and microstructure. Journal of Food Engineering, 223, 109-115. doi:10.1016/j.jfoodeng.2017.12.011

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem