- -

Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ghrib, Y. es_ES
dc.contributor.author Frini-Srasra, N. es_ES
dc.contributor.author Srasra, E. es_ES
dc.contributor.author Martínez-Triguero, Joaquín es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-07-09T03:31:34Z
dc.date.available 2020-07-09T03:31:34Z
dc.date.issued 2018-02-07 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/147674
dc.description.abstract [EN] A series of samples of cocrystallized USY/ZSM-5 zeolites were synthesized from kaolin and silica following a sequential two-step procedure with varying content of ZSM-5 (5-25 wt%). The presence of the ZSM-5 phases was confirmed by XRD and Si-29-NMR. The samples were stabilized by steaming and tested as FCC catalysts in the cracking of vacuum gasoil. The results obtained show that effectiveness of ZSM-5 as a propylene booster is enhanced when zeolites USY and ZSM-5 were synthesized in the same kaolin material, instead of using merely the physical mixtures of the two zeolites. This enhancement is attributed to the higher ability of ZSM-5 to crack larger olefins and suppress hydrogen-transfer to the gasoline fraction when the zeolites are grown together. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government MINECO through "Severo Ochoa" SEV-2016-0683, CTQ2015-67592-P and CTQ2015-68951-C3-1-R, by the European Union through ERC-AdG-2014-671093 (SynCatMatch) and by the Fundacion Ramon Areces through a research contract of the "Life and Materials Science" program. The Electron Microscopy Service of the UPV is acknowledged for their help in sample characterization. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c7cy01477e es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-68951-C3-1-R/ES/TRATAMIENTOS CATALITICOS AVANZADOS PARA LA VALORIZACION DE LA BIOMASA Y LA ELIMINACION DE RESIDUOS ASOCIADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Ghrib, Y.; Frini-Srasra, N.; Srasra, E.; Martínez-Triguero, J.; Corma Canós, A. (2018). Synthesis of cocrystallized USY/ZSM-5 zeolites from kaolin and its use as fluid catalytic cracking catalysts. Catalysis Science & Technology. 8(3):716-725. https://doi.org/10.1039/c7cy01477e es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c7cy01477e es_ES
dc.description.upvformatpinicio 716 es_ES
dc.description.upvformatpfin 725 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\383005 es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Corma, A., & Wojciechowski, B. W. (1985). The Chemistry of Catalytic Cracking. Catalysis Reviews, 27(1), 29-150. doi:10.1080/01614948509342358 es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references O’Connor, P. (2007). Chapter 15 Catalytic cracking: The Future of an Evolving Process. Studies in Surface Science and Catalysis, 227-251. doi:10.1016/s0167-2991(07)80198-4 es_ES
dc.description.references Biswas, J., & Maxwell, I. E. (1990). Recent process- and catalyst-related developments in fluid catalytic cracking. Applied Catalysis, 63(1), 197-258. doi:10.1016/s0166-9834(00)81716-9 es_ES
dc.description.references CORMA, A., HUBER, G., SAUVANAUD, L., & OCONNOR, P. (2007). Processing biomass-derived oxygenates in the oil refinery: Catalytic cracking (FCC) reaction pathways and role of catalyst. Journal of Catalysis, 247(2), 307-327. doi:10.1016/j.jcat.2007.01.023 es_ES
dc.description.references Corma, A., & Sauvanaud, L. (2013). FCC testing at bench scale: New units, new processes, new feeds. Catalysis Today, 218-219, 107-114. doi:10.1016/j.cattod.2013.03.038 es_ES
dc.description.references Buchanan, J. . (2000). The chemistry of olefins production by ZSM-5 addition to catalytic cracking units. Catalysis Today, 55(3), 207-212. doi:10.1016/s0920-5861(99)00248-5 es_ES
dc.description.references Adewuyi, Y. G., Klocke, D. J., & Buchanan, J. S. (1995). Effects of high-level additions of ZSM-5 to a fluid catalytic cracking (FCC) RE-USY catalyst. Applied Catalysis A: General, 131(1), 121-133. doi:10.1016/0926-860x(95)00124-7 es_ES
dc.description.references Woltermann, G. M., Magee, J. S., & Griffith, S. D. (1993). Chapter 4 Commercial Preparation and Characterization of FCC Catalysts. Fluid Catalytic Cracking: Science and Technology, 105-144. doi:10.1016/s0167-2991(08)63827-6 es_ES
dc.description.references Xu, M., Cheng, M., & Bao, X. (2000). Growth of ultrafine zeolite Y crystals on metakaolin microspheres. Chemical Communications, (19), 1873-1874. doi:10.1039/b005787h es_ES
dc.description.references Li, T., Liu, H., Fan, Y., Yuan, P., Shi, G., Bi, X. T., & Bao, X. (2012). Synthesis of zeolite Y from natural aluminosilicate minerals for fluid catalytic cracking application. Green Chemistry, 14(12), 3255. doi:10.1039/c2gc36101a es_ES
dc.description.references Wei, B., Liu, H., Li, T., Cao, L., Fan, Y., & Bao, X. (2010). Natural rectorite mineral: A promising substitute of kaolin for in-situ synthesis of fluid catalytic cracking catalysts. AIChE Journal, 56(11), 2913-2922. doi:10.1002/aic.12195 es_ES
dc.description.references Ding, J., Liu, H., Yuan, P., Shi, G., & Bao, X. (2013). Catalytic Properties of a Hierarchical Zeolite Synthesized from a Natural Aluminosilicate Mineral without the Use of a Secondary Mesoscale Template. ChemCatChem, 5(8), 2258-2269. doi:10.1002/cctc.201300049 es_ES
dc.description.references Yue, Y., Liu, H., Yuan, P., Li, T., Yu, C., Bi, H., & Bao, X. (2014). From natural aluminosilicate minerals to hierarchical ZSM-5 zeolites: A nanoscale depolymerization–reorganization approach. Journal of Catalysis, 319, 200-210. doi:10.1016/j.jcat.2014.08.009 es_ES
dc.description.references Holmes, S. M., Khoo, S. H., & Kovo, A. S. (2011). The direct conversion of impure natural kaolin into pure zeolite catalysts. Green Chemistry, 13(5), 1152. doi:10.1039/c1gc15099e es_ES
dc.description.references Mintova, S., Valtchev, V., Vultcheva, E., & Veleva, S. (1992). Crystallization kinetics of zeolite ZSM-5. Zeolites, 12(2), 210-215. doi:10.1016/0144-2449(92)90086-5 es_ES
dc.description.references P. H. Schipper , F. G.Dwyer , P. T.Sparrell , S.Mizrahi and J. A.Herbst , in Fluid Catalytic Cracking , American Chemical Society , 1988 , ch. 5, vol. 375 , pp. 64–86 es_ES
dc.description.references Degnan, T. F., Chitnis, G. K., & Schipper, P. H. (2000). History of ZSM-5 fluid catalytic cracking additive development at Mobil. Microporous and Mesoporous Materials, 35-36, 245-252. doi:10.1016/s1387-1811(99)00225-5 es_ES
dc.description.references Corma, A., & Martínez-Triguero, J. (1994). Kinetics of gasoil cracking and catalyst decay on SAPO-37 and USY molecular sieves. Applied Catalysis A: General, 118(2), 153-162. doi:10.1016/0926-860x(94)80310-2 es_ES
dc.description.references Corma, A., Martı́nez-Triguero, J., & Martı́nez, C. (2001). The Use of ITQ-7 as a FCC Zeolitic Additive. Journal of Catalysis, 197(1), 151-159. doi:10.1006/jcat.2000.3065 es_ES
dc.description.references Goodyear, J., & Duffin, W. J. (1961). An X-ray examination of an exceptionally well crystallized kaolinite. Mineralogical Magazine and Journal of the Mineralogical Society, 32(254), 902-907. doi:10.1180/minmag.1961.032.254.05 es_ES
dc.description.references Salter, T. L., & Riley, W. E. (1994). Quartz determination in kaolin at the 0.1% level. Analytica Chimica Acta, 286(1), 49-55. doi:10.1016/0003-2670(94)80175-4 es_ES
dc.description.references JOHNSON, M. (1978). Estimation of the zeolite content of a catalyst from nitrogen adsorption isotherms. Journal of Catalysis, 52(3), 425-431. doi:10.1016/0021-9517(78)90346-9 es_ES
dc.description.references Peters, A. W. (1993). Chapter 6 Instrumental Methods of FCC Catalyst Characterization. Fluid Catalytic Cracking: Science and Technology, 183-221. doi:10.1016/s0167-2991(08)63829-x es_ES
dc.description.references BLASCO, T., CORMA, A., & MARTINEZTRIGUERO, J. (2006). Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition. Journal of Catalysis, 237(2), 267-277. doi:10.1016/j.jcat.2005.11.011 es_ES
dc.description.references Corma, A., Fornes, V., Kolodziejski, W., & Martineztriguero, L. J. (1994). Orthophosphoric Acid Interactions with Ultrastable Zeolite-Y: Infrared and NMR Studies. Journal of Catalysis, 145(1), 27-36. doi:10.1006/jcat.1994.1004 es_ES
dc.description.references Klinowski, J. (1991). Solid-state NMR studies of molecular sieve catalysts. Chemical Reviews, 91(7), 1459-1479. doi:10.1021/cr00007a010 es_ES
dc.description.references Engelhardt, G., Lohse, U., Samoson, A., Mägi, M., Tarmak, M., & Lippmaa, E. (1982). High resolution 29Si n.m.r. of dealuminated and ultrastable Y-zeolites. Zeolites, 2(1), 59-62. doi:10.1016/s0144-2449(82)80042-0 es_ES
dc.description.references Biswas, J., & Maxwell, I. E. (1990). Octane enhancement in fluid catalytic cracking. Applied Catalysis, 58(1), 1-18. doi:10.1016/s0166-9834(00)82274-5 es_ES
dc.description.references WIELERS, A. (1991). Relation between properties and performance of zeolites in paraffin cracking. Journal of Catalysis, 127(1), 51-66. doi:10.1016/0021-9517(91)90208-l es_ES
dc.description.references Haas, A., Finger, K.-E., & Alkemade, U. (1994). Application of the energy gradient selectivity concept to fluid catalytic cracking catalysts. Applied Catalysis A: General, 115(1), 103-120. doi:10.1016/0926-860x(94)80381-1 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem