- -

Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Desantes, J.M. es_ES
dc.contributor.author García-Oliver, José M es_ES
dc.contributor.author García Martínez, Antonio es_ES
dc.contributor.author Xuan, Tiemin es_ES
dc.date.accessioned 2020-07-16T03:31:45Z
dc.date.available 2020-07-16T03:31:45Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1468-0874 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148097
dc.description.abstract [EN] Even though studies on split-injection strategies have been published in recent years, there are still many remaining questions about how the first injection affects the mixing and combustion processes of the second one by changing the dwell time between both injection events or by the first injection quantity. In this article, split-injection diesel sprays with different injection strategies are investigated. Visualization of n-dodecane sprays was carried out under both non-reacting and reacting operating conditions in an optically accessible two-stroke engine equipped with a single-hole diesel injector. High-speed Schlieren imaging was applied to visualize the spray geometry development, while diffused backgroundillumination extinction imaging was applied to quantify the instantaneous soot production (net result of soot formation and oxidation). For non-reacting conditions, it was found that the vapor phase of second injection penetrates faster with a shorter dwell time and independently of the duration of the first injection. This could be explained in terms of onedimensional spray model results, which provided information on the local mixing and momentum state within the flow. Under reacting conditions, interaction between the second injection and combustion recession of the first injection is observed, resulting in shorter ignition delay and lift-off compared to the first injection. However, soot production behaves differently with different injection strategies. The maximum instantaneous soot mass produced by the second injection increases with a shorter dwell time and with longer first injection duration. es_ES
dc.description.sponsorship The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study was partially funded by the Spanish Ministry of Economy and Competitiveness in the frame of the advanced spray combustion models for efficient powertrains (COMEFF) (TRA2014-59483-R) project. Funding for Tiemin Xuan's PhD studies was granted by Universitat Politecnica de Valencia through the Programa de Apoyo para la Investigacion y Desarrollo (PAID) (grant reference FPI-2015-S2-1068) es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof International Journal of Engine Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diesel spray es_ES
dc.subject Split injection es_ES
dc.subject Vapor penetration es_ES
dc.subject Ignition delay es_ES
dc.subject Soot es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1468087418773012 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2015-S2-1068/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TRA2014-59483-R/ES/MODELOS AVANZADOS DE COMBUSTION EN SPRAYS PARA PLANTAS PROPULSIVAS EFICIENTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Desantes, J.; García-Oliver, JM.; García Martínez, A.; Xuan, T. (2019). Optical study on characteristics of non-reacting and reacting diesel spray with different strategies of split injection. International Journal of Engine Research. 20(6):606-623. https://doi.org/10.1177/1468087418773012 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1468087418773012 es_ES
dc.description.upvformatpinicio 606 es_ES
dc.description.upvformatpfin 623 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\373242 es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Arrègle, J., Pastor, J. V., López, J. J., & García, A. (2008). Insights on postinjection-associated soot emissions in direct injection diesel engines. Combustion and Flame, 154(3), 448-461. doi:10.1016/j.combustflame.2008.04.021 es_ES
dc.description.references Mendez, S., & Thirouard, B. (2008). Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines. SAE International Journal of Fuels and Lubricants, 1(1), 662-674. doi:10.4271/2008-01-1329 es_ES
dc.description.references He, Z., Xuan, T., Jiang, Z., & Yan, Y. (2013). Study on effect of fuel injection strategy on combustion noise and exhaust emission of diesel engine. Thermal Science, 17(1), 81-90. doi:10.2298/tsci120603159h es_ES
dc.description.references Kook, S., Pickett, L. M., & Musculus, M. P. B. (2009). Influence of Diesel Injection Parameters on End-of-Injection Liquid Length Recession. SAE International Journal of Engines, 2(1), 1194-1210. doi:10.4271/2009-01-1356 es_ES
dc.description.references Musculus, M. P. B., & Kattke, K. (2009). Entrainment Waves in Diesel Jets. SAE International Journal of Engines, 2(1), 1170-1193. doi:10.4271/2009-01-1355 es_ES
dc.description.references O’Connor, J., Musculus, M. P. B., & Pickett, L. M. (2016). Effect of post injections on mixture preparation and unburned hydrocarbon emissions in a heavy-duty diesel engine. Combustion and Flame, 170, 111-123. doi:10.1016/j.combustflame.2016.03.031 es_ES
dc.description.references O’Connor, J., & Musculus, M. (2013). Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding. SAE International Journal of Engines, 6(1), 400-421. doi:10.4271/2013-01-0917 es_ES
dc.description.references O’Connor, J., & Musculus, M. (2014). In-Cylinder Mechanisms of Soot Reduction by Close-Coupled Post-Injections as Revealed by Imaging of Soot Luminosity and Planar Laser-Induced Soot Incandescence in a Heavy-Duty Diesel Engine. SAE International Journal of Engines, 7(2), 673-693. doi:10.4271/2014-01-1255 es_ES
dc.description.references Bruneaux, G., & Maligne, D. (2009). Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections. SAE International Journal of Engines, 2(1), 1151-1169. doi:10.4271/2009-01-1352 es_ES
dc.description.references Pickett, L. M., Kook, S., & Williams, T. C. (2009). Transient Liquid Penetration of Early-Injection Diesel Sprays. SAE International Journal of Engines, 2(1), 785-804. doi:10.4271/2009-01-0839 es_ES
dc.description.references Skeen, S., Manin, J., & Pickett, L. M. (2015). Visualization of Ignition Processes in High-Pressure Sprays with Multiple Injections of n-Dodecane. SAE International Journal of Engines, 8(2), 696-715. doi:10.4271/2015-01-0799 es_ES
dc.description.references Bolla, M., Chishty, M. A., Hawkes, E. R., & Kook, S. (2017). Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. International Journal of Engine Research, 18(1-2), 6-14. doi:10.1177/1468087416689174 es_ES
dc.description.references Blomberg, C. K., Zeugin, L., Pandurangi, S. S., Bolla, M., Boulouchos, K., & Wright, Y. M. (2016). Modeling Split Injections of ECN «Spray A» Using a Conditional Moment Closure Combustion Model with RANS and LES. SAE International Journal of Engines, 9(4), 2107-2119. doi:10.4271/2016-01-2237 es_ES
dc.description.references Cung, K., Moiz, A., Johnson, J., Lee, S.-Y., Kweon, C.-B., & Montanaro, A. (2015). Spray–combustion interaction mechanism of multiple-injection under diesel engine conditions. Proceedings of the Combustion Institute, 35(3), 3061-3068. doi:10.1016/j.proci.2014.07.054 es_ES
dc.description.references Moiz, A. A., Cung, K. D., & Lee, S.-Y. (2017). Simultaneous Schlieren–PLIF Studies for Ignition and Soot Luminosity Visualization With Close-Coupled High-Pressure Double Injections of n-Dodecane. Journal of Energy Resources Technology, 139(1). doi:10.1115/1.4035071 es_ES
dc.description.references Maes, N., Bakker, P. C., Dam, N., & Somers, B. (2017). Transient Flame Development in a Constant-Volume Vessel Using a Split-Scheme Injection Strategy. SAE International Journal of Fuels and Lubricants, 10(2), 318-327. doi:10.4271/2017-01-0815 es_ES
dc.description.references Moiz, A. A., Ameen, M. M., Lee, S.-Y., & Som, S. (2016). Study of soot production for double injections of n-dodecane in CI engine-like conditions. Combustion and Flame, 173, 123-131. doi:10.1016/j.combustflame.2016.08.005 es_ES
dc.description.references PASTOR, J., JAVIERLOPEZ, J., GARCIA, J., & PASTOR, J. (2008). A 1D model for the description of mixing-controlled inert diesel sprays. Fuel, 87(13-14), 2871-2885. doi:10.1016/j.fuel.2008.04.017 es_ES
dc.description.references Desantes, J. M., Pastor, J. V., García-Oliver, J. M., & Pastor, J. M. (2009). A 1D model for the description of mixing-controlled reacting diesel sprays. Combustion and Flame, 156(1), 234-249. doi:10.1016/j.combustflame.2008.10.008 es_ES
dc.description.references Pastor, J., Garcia-Oliver, J. M., Garcia, A., Zhong, W., Micó, C., & Xuan, T. (2017). An Experimental Study on Diesel Spray Injection into a Non-Quiescent Chamber. SAE International Journal of Fuels and Lubricants, 10(2), 394-406. doi:10.4271/2017-01-0850 es_ES
dc.description.references Settles, G. S. (2001). Schlieren and Shadowgraph Techniques. doi:10.1007/978-3-642-56640-0 es_ES
dc.description.references Pastor, J. V., Payri, R., Garcia-Oliver, J. M., & Briceño, F. J. (2013). Schlieren Methodology for the Analysis of Transient Diesel Flame Evolution. SAE International Journal of Engines, 6(3), 1661-1676. doi:10.4271/2013-24-0041 es_ES
dc.description.references Pastor, J. V., Garcia-Oliver, J. M., Novella, R., & Xuan, T. (2015). Soot Quantification of Single-Hole Diesel Sprays by Means of Extinction Imaging. SAE International Journal of Engines, 8(5), 2068-2077. doi:10.4271/2015-24-2417 es_ES
dc.description.references Pickett, L. M., & Siebers, D. L. (2004). Soot in diesel fuel jets: effects of ambient temperature, ambient density, and injection pressure. Combustion and Flame, 138(1-2), 114-135. doi:10.1016/j.combustflame.2004.04.006 es_ES
dc.description.references Ko¨ylu¨, U. O., & Faeth, G. M. (1994). Optical Properties of Overfire Soot in Buoyant Turbulent Diffusion Flames at Long Residence Times. Journal of Heat Transfer, 116(1), 152-159. doi:10.1115/1.2910849 es_ES
dc.description.references Manin, J., Pickett, L. M., & Skeen, S. A. (2013). Two-Color Diffused Back-Illumination Imaging as a Diagnostic for Time-Resolved Soot Measurements in Reacting Sprays. SAE International Journal of Engines, 6(4), 1908-1921. doi:10.4271/2013-01-2548 es_ES
dc.description.references Choi, M. Y., Mulholland, G. W., Hamins, A., & Kashiwagi, T. (1995). Comparisons of the soot volume fraction using gravimetric and light extinction techniques. Combustion and Flame, 102(1-2), 161-169. doi:10.1016/0010-2180(94)00282-w es_ES
dc.description.references Knox, B. W., & Genzale, C. L. (2015). Reduced-order numerical model for transient reacting diesel sprays with detailed kinetics. International Journal of Engine Research, 17(3), 261-279. doi:10.1177/1468087415570765 es_ES
dc.description.references Burke, S. P., & Schumann, T. E. W. (1928). Diffusion Flames. Industrial & Engineering Chemistry, 20(10), 998-1004. doi:10.1021/ie50226a005 es_ES
dc.description.references Desantes, J. M., García-Oliver, J. M., Xuan, T., & Vera-Tudela, W. (2017). A study on tip penetration velocity and radial expansion of reacting diesel sprays with different fuels. Fuel, 207, 323-335. doi:10.1016/j.fuel.2017.06.108 es_ES
dc.description.references Nerva, J.-G. (s. f.). An Assessment of fuel physical and chemical properties in the combustion of a Diesel spray. doi:10.4995/thesis/10251/29767 es_ES
dc.description.references Payri, R., Salvador, F. J., Gimeno, J., & Bracho, G. (2008). A NEW METHODOLOGY FOR CORRECTING THE SIGNAL CUMULATIVE PHENOMENON ON INJECTION RATE MEASUREMENTS. Experimental Techniques, 32(1), 46-49. doi:10.1111/j.1747-1567.2007.00188.x es_ES
dc.description.references Payri, R., Gimeno, J., Novella, R., & Bracho, G. (2016). On the rate of injection modeling applied to direct injection compression ignition engines. International Journal of Engine Research, 17(10), 1015-1030. doi:10.1177/1468087416636281 es_ES
dc.description.references Malbec, L.-M., Eagle, W. E., Musculus, M. P. B., & Schihl, P. (2015). Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine. SAE International Journal of Engines, 9(1), 47-70. doi:10.4271/2015-01-1830 es_ES
dc.description.references Payri, R., García-Oliver, J. M., Xuan, T., & Bardi, M. (2015). A study on diesel spray tip penetration and radial expansion under reacting conditions. Applied Thermal Engineering, 90, 619-629. doi:10.1016/j.applthermaleng.2015.07.042 es_ES
dc.description.references Knox, B. W., & Genzale, C. L. (2017). Scaling combustion recession after end of injection in diesel sprays. Combustion and Flame, 177, 24-36. doi:10.1016/j.combustflame.2016.11.021 es_ES
dc.description.references García-Oliver, J. M., Malbec, L.-M., Toda, H. B., & Bruneaux, G. (2017). A study on the interaction between local flow and flame structure for mixing-controlled Diesel sprays. Combustion and Flame, 179, 157-171. doi:10.1016/j.combustflame.2017.01.023 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem