- -

Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Blasco-Giménez, Ramón es_ES
dc.contributor.author Lequerica, Juan L. es_ES
dc.contributor.author Herrero, María es_ES
dc.contributor.author Hornero, Fernando es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2020-07-18T03:31:51Z
dc.date.available 2020-07-18T03:31:51Z
dc.date.issued 2010-04 es_ES
dc.identifier.issn 0967-3334 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148246
dc.description This is an author-created, un-copyedited versíon of an article published in Physiological Measurement. IOP Publishing Ltd is not responsíble for any errors or omissíons in this versíon of the manuscript or any versíon derived from it. The Versíon of Record is available online at http://doi.org/10.1088/0967-3334/31/4/009 es_ES
dc.description.abstract [EN] The aim of this work was to study linear deterministic models to predict tissue temperature during radiofrequency cardiac ablation (RFCA) by measuring magnitudes such as electrode temperature, power and impedance between active and dispersive electrodes. The concept involves autoregressive models with exogenous input (ARX), which is a particular case of the autoregressive moving average model with exogenous input (ARMAX). The values of the mode parameters were determined from a least-squares fit of experimental data. The data were obtained from radiofrequency ablations conducted on agar models with different contact pressure conditions between electrode and agar (0 and 20 g) and different flow rates around the electrode (1, 1.5 and 2 L min¿1). Half of all the ablations were chosen randomly to be used for identification (i.e. determination of model parameters) and the other half were used for model validation. The results suggest that (1) a linear model can be developed to predict tissue temperature at a depth of 4.5 mm during RF cardiac ablation by using the variables applied power, impedance and electrode temperature; (2) the best model provides a reasonably accurate estimate of tissue temperature with a 60% probability of achieving average errors better than 5 °C; (3) substantial errors (larger than 15 °C) were found only in 6.6% of cases and were associated with abnormal experiments (e.g. those involving the displacement of the ablation electrode) and (4) the impact of measuring impedance on the overall estimate is negligible (around 1 °C). es_ES
dc.description.sponsorship This work was supported by the 'Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica del Ministerio de Educacion y Ciencia' of Spain (TEC200801369/ TEC) and by an R&D contract (CSIC-20060633) between Edwards Lifescience Ltd and the Spanish National Research Council (CSIC). The English revision and correction of this paper was funded by the Universidad Politecnica de Valencia, Spain. We thank L Melecio for his invaluable technical support in conducting the experiments. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Physiological Measurement es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Agar phantom es_ES
dc.subject Autoregressive modeling es_ES
dc.subject Black-box modeling es_ES
dc.subject Cardiac ablation es_ES
dc.subject Catheter ablation es_ES
dc.subject Non-structured model es_ES
dc.subject Temperature prediction es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Temperature measurement es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0967-3334/31/4/009 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//CSIC-20060633/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//TEC2008-01369/ES/MODELOS COMPUTACIONALES E INVESTIGACION EXPERIMENTAL EN EL ESTUDIO DE TECNICAS QUIRURGICAS DE CALENTAMIENTO DE TEJIDOS BIOLOGICOS MEDIANTE CORRIENTES DE RADIOFRECUENCIA./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Blasco-Giménez, R.; Lequerica, JL.; Herrero, M.; Hornero, F.; Berjano, E. (2010). Black-box modeling to estimate tissue temperature during radiofrequency catheter cardiac ablation: feasibility study on an agar phantom model. Physiological Measurement. 31(4):581-594. https://doi.org/10.1088/0967-3334/31/4/009 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1088/0967-3334/31/4/009 es_ES
dc.description.upvformatpinicio 581 es_ES
dc.description.upvformatpfin 594 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 31 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\39255 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hong Cao, Tungjitkusolmun, S., Young Bin Choy, Jang-Zern Tsai, Vorperian, V. R., & Webster, J. G. (2002). Using electrical impedance to predict catheter-endocardial contact during RF cardiac ablation. IEEE Transactions on Biomedical Engineering, 49(3), 247-253. doi:10.1109/10.983459 es_ES
dc.description.references Hong Cao, Vorperian, V. R., Jang-Zem Tsai, Tungjitkusolmun, S., Eung Je Woo, & Webster, J. G. (2000). Temperature measurement within myocardium during in vitro RF catheter ablation. IEEE Transactions on Biomedical Engineering, 47(11), 1518-1524. doi:10.1109/10.880104 es_ES
dc.description.references Hamner, C. E., Potter, D. D., Cho, K. R., Lutterman, A., Francischelli, D., Sundt, T. M., & Schaff, H. V. (2005). Irrigated Radiofrequency Ablation With Transmurality Feedback Reliably Produces Cox Maze Lesions In Vivo. The Annals of Thoracic Surgery, 80(6), 2263-2270. doi:10.1016/j.athoracsur.2005.06.017 es_ES
dc.description.references HARTUNG, W. M., BURTON, M. E., DEAM, A. G., WALTER, P. F., McTEAGUE, K., & LANGBERG, J. J. (1995). Estimation of Temperature During Radiofrequency Catheter Ablation Using Impedance Measurements. Pacing and Clinical Electrophysiology, 18(11), 2017-2021. doi:10.1111/j.1540-8159.1995.tb03862.x es_ES
dc.description.references Ding Sheng He, Bosnos, M., Mays, M. Z., & Marcus, F. (2003). Assessment of myocardial lesion size during in vitro radio frequency catheter ablation. IEEE Transactions on Biomedical Engineering, 50(6), 768-776. doi:10.1109/tbme.2003.812161 es_ES
dc.description.references KO, W.-C., HUANG, S. K. S., LIN, J.-L., SHAU, W.-Y., LAI, L.-P., & CHEN, P. H. (2001). New Method for Predicting Efficiency of Heating by Measuring Bioimpedance During Radiofrequency Catheter Ablation in Humans. Journal of Cardiovascular Electrophysiology, 12(7), 819-823. doi:10.1046/j.1540-8167.2001.00819.x es_ES
dc.description.references Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 es_ES
dc.description.references Lai, Y.-C., Choy, Y. B., Haemmerich, D., Vorperian, V. R., & Webster, J. G. (2004). Lesion Size Estimator of Cardiac Radiofrequency Ablation at Different Common Locations With Different Tip Temperatures. IEEE Transactions on Biomedical Engineering, 51(10), 1859-1864. doi:10.1109/tbme.2004.831529 es_ES
dc.description.references Lequerica, J. L., Berjano, E. J., Herrero, M., Melecio, L., & Hornero, F. (2008). A cooled water-irrigated intraesophageal balloon to prevent thermal injury during cardiac ablation: experimental study based on an agar phantom. Physics in Medicine and Biology, 53(4), N25-N34. doi:10.1088/0031-9155/53/4/n01 es_ES
dc.description.references Mattingly, M., Bailey, E. A., Dutton, A. W., Roemer, R. B., & Devasia, S. (1998). Reduced-order modeling for hyperthermia: an extended balanced-realization-based approach. IEEE Transactions on Biomedical Engineering, 45(9), 1154-1162. doi:10.1109/10.709559 es_ES
dc.description.references PILCHER, T. A., SANFORD, A. L., SAUL, J. P., & HAEMMERICH, D. (2006). Convective Cooling Effect on Cooled-Tip Catheter Compared to Large-Tip Catheter Radiofrequency Ablation. Pacing and Clinical Electrophysiology, 29(12), 1368-1374. doi:10.1111/j.1540-8159.2006.00549.x es_ES
dc.description.references Rodríguez, I., Lequerica, J. L., Berjano, E. J., Herrero, M., & Hornero, F. (2007). Esophageal temperature monitoring during radiofrequency catheter ablation: experimental study based on an agar phantom model. Physiological Measurement, 28(5), 453-463. doi:10.1088/0967-3334/28/5/001 es_ES
dc.description.references SCHUMACHER, B., EICK, O., WITTKAMPF, F., PEZOLD, C., TEBBENJOHANNS, J., JUNG, W., & LUDERITZ, B. (1999). Temperature Response Following Nontraumatic Low Power Radiofrequency Application. Pacing and Clinical Electrophysiology, 22(2), 339-343. doi:10.1111/j.1540-8159.1999.tb00448.x es_ES
dc.description.references Teixeira, C. A., Ruano, A. E., Ruano, M. G., Pereira, W. C. A., & Negreira, C. (2006). Non-invasive temperature prediction of in vitro therapeutic ultrasound signals using neural networks. Medical & Biological Engineering & Computing, 44(1-2), 111-116. doi:10.1007/s11517-005-0004-2 es_ES
dc.description.references Teixeira, C. A., Ruano, M. G., Ruano, A. E., & Pereira, W. C. A. (2008). A Soft-Computing Methodology for Noninvasive Time-Spatial Temperature Estimation. IEEE Transactions on Biomedical Engineering, 55(2), 572-580. doi:10.1109/tbme.2007.901029 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem