- -

DNS of a turbulent Couette flow at constant wall transpiration up to Re-tau=1000

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

DNS of a turbulent Couette flow at constant wall transpiration up to Re-tau=1000

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kraheberger, Stefanie es_ES
dc.contributor.author Hoyas, S es_ES
dc.contributor.author Oberlack, Martin es_ES
dc.date.accessioned 2020-07-30T03:34:07Z
dc.date.available 2020-07-30T03:34:07Z
dc.date.issued 2018-01-25 es_ES
dc.identifier.issn 0022-1120 es_ES
dc.identifier.uri http://hdl.handle.net/10251/148867
dc.description.abstract [EN] We present a new set of direct numerical simulation data of a turbulent plane Couette flow with constant wall-normal transpiration velocity V-0, i.e. permeable boundary conditions, such that there is blowing on the lower side and suction on the upper side. Hence, there is no net change in flux to preserve periodic boundary conditions in the streamwise direction. Simulations were performed at Re-tau = 250; 500; 1000 with varying transpiration rates in the range V-0(+) approximate to 0.03 to 0.085. Additionally, a classical Couette flow case at Re-tau = 1000 is presented for comparison. As a first key result we found a considerably extended logarithmic region of the mean velocity profile, with constant indicator function kappa = 0.77 as transpiration increases. Further, turbulent intensities are observed to decrease with increasing transpiration rate. Mean velocities and intensities collapse only in the cases where the transpiration rate is kept constant, while they are largely insensitive to friction Reynolds number variations. The long and wide characteristic stationary rolls of classical turbulent Couette flow are still present for all present DNS runs. The rolls are affected by wall transpiration, but they are not destroyed even for the largest transpiration velocity case. Spectral information indicates the prevalence of the rolls and the existence of wide structures near the blowing wall. The statistics of all simulations can be downloaded from the webpage of the Chair of Fluid Dynamics. es_ES
dc.description.sponsorship This work was supported by the German Science Foundation (DFG) under grant number OB96/39-1. S.H. was partially supported by project ENE2015-71333-R. The work of S.K. is partially supported by the 'Excellence Initiative' of the German Federal and State Governments under the umbrella of the Graduate School of Computational Engineering at TU Darmstadt. The computations of the new simulations were made possible by a generous grant of computing time from the SuperMUC Petascale System at the Leibniz Supercomputing Centre (LRZ) under project-ID pr92la. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Journal of Fluid Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Turbulent flows es_ES
dc.subject Turbulence theory es_ES
dc.subject Turbulence simulation es_ES
dc.subject.classification INGENIERIA AEROESPACIAL es_ES
dc.title DNS of a turbulent Couette flow at constant wall transpiration up to Re-tau=1000 es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/jfm.2017.757 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//OB96%2F39-1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/LRZ//pr92la/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-71333-R/ES/CONVECCION FORZADA EN CANALES TURBULENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Máquinas y Motores Térmicos - Departament de Màquines i Motors Tèrmics es_ES
dc.description.bibliographicCitation Kraheberger, S.; Hoyas, S.; Oberlack, M. (2018). DNS of a turbulent Couette flow at constant wall transpiration up to Re-tau=1000. Journal of Fluid Mechanics. 835:421-443. https://doi.org/10.1017/jfm.2017.757 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/jfm.2017.757 es_ES
dc.description.upvformatpinicio 421 es_ES
dc.description.upvformatpfin 443 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 835 es_ES
dc.relation.pasarela S\350093 es_ES
dc.contributor.funder Leibniz Supercomputing Centre es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Komminaho, J., Lundbladh, A., & Johansson, A. V. (1996). Very large structures in plane turbulent Couette flow. Journal of Fluid Mechanics, 320(-1), 259. doi:10.1017/s0022112096007537 es_ES
dc.description.references Avsarkisov, V., Oberlack, M., & Hoyas, S. (2014). New scaling laws for turbulent Poiseuille flow with wall transpiration. Journal of Fluid Mechanics, 746, 99-122. doi:10.1017/jfm.2014.98 es_ES
dc.description.references Hamilton, J. M., Kim, J., & Waleffe, F. (1995). Regeneration mechanisms of near-wall turbulence structures. Journal of Fluid Mechanics, 287, 317-348. doi:10.1017/s0022112095000978 es_ES
dc.description.references Pope, S. B. (2000). Turbulent Flows. doi:10.1017/cbo9780511840531 es_ES
dc.description.references Kametani, Y., Fukagata, K., Örlü, R., & Schlatter, P. (2015). Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. International Journal of Heat and Fluid Flow, 55, 132-142. doi:10.1016/j.ijheatfluidflow.2015.05.019 es_ES
dc.description.references Hoyas, S., & Jiménez, J. (2006). Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003. Physics of Fluids, 18(1), 011702. doi:10.1063/1.2162185 es_ES
dc.description.references Schlatter, P., & Örlü, R. (2011). Turbulent asymptotic suction boundary layers studied by simulation. Journal of Physics: Conference Series, 318(2), 022020. doi:10.1088/1742-6596/318/2/022020 es_ES
dc.description.references Moser, R. D., Kim, J., & Mansour, N. N. (1999). Direct numerical simulation of turbulent channel flow up to Reτ=590. Physics of Fluids, 11(4), 943-945. doi:10.1063/1.869966 es_ES
dc.description.references Avsarkisov, V., Hoyas, S., Oberlack, M., & García-Galache, J. P. (2014). Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics, 751. doi:10.1017/jfm.2014.323 es_ES
dc.description.references Kim, J., Moin, P., & Moser, R. (1987). Turbulence statistics in fully developed channel flow at low Reynolds number. Journal of Fluid Mechanics, 177, 133-166. doi:10.1017/s0022112087000892 es_ES
dc.description.references Bech, K. H., Tillmark, N., Alfredsson, P. H., & Andersson, H. I. (1995). An investigation of turbulent plane Couette flow at low Reynolds numbers. Journal of Fluid Mechanics, 286, 291-325. doi:10.1017/s0022112095000747 es_ES
dc.description.references Lam, K., & Banerjee, S. (1992). On the condition of streak formation in a bounded turbulent flow. Physics of Fluids A: Fluid Dynamics, 4(2), 306-320. doi:10.1063/1.858306 es_ES
dc.description.references Bobke, A., Örlü, R., & Schlatter, P. (2015). Simulations of turbulent asymptotic suction boundary layers. Journal of Turbulence, 17(2), 157-180. doi:10.1080/14685248.2015.1083574 es_ES
dc.description.references CHAKRABORTY, P., BALACHANDAR, S., & ADRIAN, R. J. (2005). On the relationships between local vortex identification schemes. Journal of Fluid Mechanics, 535, 189-214. doi:10.1017/s0022112005004726 es_ES
dc.description.references Hoyas, S., & Jiménez, J. (2008). Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Physics of Fluids, 20(10), 101511. doi:10.1063/1.3005862 es_ES
dc.description.references Hutchins, N., & Marusic, I. (2007). Large-scale influences in near-wall turbulence. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1852), 647-664. doi:10.1098/rsta.2006.1942 es_ES
dc.description.references Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of Fluid Mechanics, 285(-1), 69. doi:10.1017/s0022112095000462 es_ES
dc.description.references JIMÉNEZ, J., UHLMANN, M., PINELLI, A., & KAWAHARA, G. (2001). Turbulent shear flow over active and passive porous surfaces. Journal of Fluid Mechanics, 442, 89-117. doi:10.1017/s0022112001004888 es_ES
dc.description.references KITOH, O., NAKABYASHI, K., & NISHIMURA, F. (2005). Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure. Journal of Fluid Mechanics, 539(-1), 199. doi:10.1017/s0022112005005641 es_ES
dc.description.references Lee, M., & Moser, R. D. (2015). Direct numerical simulation of turbulent channel flow up to. Journal of Fluid Mechanics, 774, 395-415. doi:10.1017/jfm.2015.268 es_ES
dc.description.references Lele, S. K. (1992). Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103(1), 16-42. doi:10.1016/0021-9991(92)90324-r es_ES
dc.description.references PIROZZOLI, S., BERNARDINI, M., & ORLANDI, P. (2011). Large-scale motions and inner/outer layer interactions in turbulent Couette–Poiseuille flows. Journal of Fluid Mechanics, 680, 534-563. doi:10.1017/jfm.2011.186 es_ES
dc.description.references Spalart, P. R., Moser, R. D., & Rogers, M. M. (1991). Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions. Journal of Computational Physics, 96(2), 297-324. doi:10.1016/0021-9991(91)90238-g es_ES
dc.description.references Tsukahara, T., Kawamura, H., & Shingai, K. (2006). DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. Journal of Turbulence, 7, N19. doi:10.1080/14685240600609866 es_ES
dc.description.references Zhapbasbaev, U. K., & Isakhanova, G. Z. (1998). Developed turbulent flow in a plane channel with simultaneous injection through one porous wall and suction through the other. Journal of Applied Mechanics and Technical Physics, 39(1), 53-59. doi:10.1007/bf02467997 es_ES
dc.description.references DEL LAMO, J. C., JIMNEZ, J., ZANDONADE, P., & MOSER, R. D. (2004). Scaling of the energy spectra of turbulent channels. Journal of Fluid Mechanics, 500, 135-144. doi:10.1017/s002211200300733x es_ES
dc.description.references Kitoh, O., & Umeki, M. (2008). Experimental study on large-scale streak structure in the core region of turbulent plane Couette flow. Physics of Fluids, 20(2), 025107. doi:10.1063/1.2844476 es_ES
dc.description.references Del ÁLAMO, J. C., JIMÉNEZ, J., ZANDONADE, P., & MOSER, R. D. (2006). Self-similar vortex clusters in the turbulent logarithmic region. Journal of Fluid Mechanics, 561, 329. doi:10.1017/s0022112006000814 es_ES
dc.description.references Sumitani, Y., & Kasagi, N. (1995). Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal, 33(7), 1220-1228. doi:10.2514/3.12363 es_ES
dc.description.references Tillmark, N. 1995 Experiments on transition and turbulence in plane Couette flow. PhD thesis, KTH, Royal Institute of Technology. es_ES
dc.description.references Pirozzoli, S., Bernardini, M., & Orlandi, P. (2014). Turbulence statistics in Couette flow at high Reynolds number. Journal of Fluid Mechanics, 758, 327-343. doi:10.1017/jfm.2014.529 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem