- -

Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Formoso-Rafferty, N. es_ES
dc.contributor.author Cervantes, I. es_ES
dc.contributor.author Ibañez Escriche, Noelia es_ES
dc.contributor.author Gutiérrez, J.P. es_ES
dc.date.accessioned 2020-09-18T03:35:09Z
dc.date.available 2020-09-18T03:35:09Z
dc.date.issued 2016-11 es_ES
dc.identifier.issn 1751-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/150325
dc.description.abstract [EN] The objective of this work was to study the changes that, selecting for environmental variability of birth weight (BW), could bring to other interesting traits in livestock such as: survivability at weaning (SW), litter size (LS) and weaning weight (WW), their variability assessed from standard deviations of LS, standard deviation of WW (SDWW) and also the total litter weight at birth (TLBW) and total litter weight at weaning. Data were registered after eight generations of a divergent selection experiment for BW environmental variability in mice. Genetic parameters and phenotypic and genetic evolution were assessed using linear homoscedastic and heteroscedastic models in which the traits were attributed to the female, except BW and WW that were in some models also attributed to the pup. Genetic correlation between the trait and variability levels was -0.81 for LS and -0.33 for WW. Clear divergent phenotypic trends were observed between lines for LS, WW and SDWW. Although animals were heavier in the high line, TLBW and at weaning was greater in the low line. Despite the negative genetic correlation that was obtained, SDWW was also higher in the high line. Heritabilities were 0.21 and 0.06, respectively, for LS and SW. Both phenotypic and genetic trends showed clear superiority of the low line over the high line for these traits, but inferior for WW. Heteroscedastic model performed similar to the homoscedastic model when there was enough information. Considering LS and survival, the low line was preferred from a welfare point of view, but its superiority from the productivity perspective was not clear. Robustness seemed higher as shown by a low variation and having a benefit to the animal welfare, but this still remains unclear. It was concluded that low variation benefits the welfare of animals. es_ES
dc.description.sponsorship This paper was partially funded by a grant from the Spanish Government (AGL2008-00794). The experiment will be continued with partial funding of Feed-a-gene and a grant from MEC-INIA (RTA2014-00015-C02-01). The authors wish to thank the detailed work of an anonymous reviewer who has contributed greatly to improving this work. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Animal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Canalisation es_ES
dc.subject Robustness es_ES
dc.subject Genetic trends es_ES
dc.subject Mice es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S1751731116000860 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2014-00015-C02-01/ES/Mejora de la eficiencia alimentaria en cerdos y conejos. Determinismo genético y estrategias de selección/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2008-00794/ES/SELECCION PARA EL CARACTER VARIABILIDAD DEL PESO AL NACIMIENTO EN MUS MUSCULUS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Formoso-Rafferty, N.; Cervantes, I.; Ibañez Escriche, N.; Gutiérrez, J. (2016). Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal. 10(11):1770-1777. https://doi.org/10.1017/S1751731116000860 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1751731116000860 es_ES
dc.description.upvformatpinicio 1770 es_ES
dc.description.upvformatpfin 1777 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.pmid 27170448 es_ES
dc.relation.pasarela S\343522 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Wolf, J., Žáková, E., & Groeneveld, E. (2008). Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits, stillborn piglets and losses until weaning. Livestock Science, 115(2-3), 195-205. doi:10.1016/j.livsci.2007.07.009 es_ES
dc.description.references Mesa, H., Safranski, T. J., Cammack, K. M., Weaber, R. L., & Lamberson, W. R. (2006). Genetic and phenotypic relationships of farrowing and weaning survival to birth and placental weights in pigs1. Journal of Animal Science, 84(1), 32-40. doi:10.2527/2006.84132x es_ES
dc.description.references Garreau, H., Bolet, G., Larzul, C., Robert-Granié, C., Saleil, G., SanCristobal, M., & Bodin, L. (2008). Results of four generations of a canalising selection for rabbit birth weight. Livestock Science, 119(1-3), 55-62. doi:10.1016/j.livsci.2008.02.009 es_ES
dc.description.references Garcı́a, M. ., & Baselga, M. (2002). Estimation of correlated response on growth traits to selection in litter size of rabbits using a cryopreserved control population and genetic trends. Livestock Production Science, 78(2), 91-98. doi:10.1016/s0301-6226(02)00093-3 es_ES
dc.description.references Hill, W. G., & Caballero, A. (1992). Artificial Selection Experiments. Annual Review of Ecology and Systematics, 23(1), 287-310. doi:10.1146/annurev.es.23.110192.001443 es_ES
dc.description.references García M , David I , Garreau H , Ibáñez-Escriche N , Mallard J , Masson JP , Pommeret D , Robert-Granié C and Bodin L 2009. Comparisons of three models for canalising selection or genetic robustness. Proceedings of the 60th Annual Meeting of European Association for Animal Production, August 2009, Barcelona, Spain, 599pp. es_ES
dc.description.references Bolet, G., Garreau, H., Joly, T., Theau-Clement, M., Falieres, J., Hurtaud, J., & Bodin, L. (2007). Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livestock Science, 111(1-2), 28-32. doi:10.1016/j.livsci.2006.11.012 es_ES
dc.description.references SanCristobal-Gaudy, M., Elsen, J.-M., Bodin, L., & Chevalet, C. (1998). Prediction of the response to a selection for canalisation of a continuous trait in animal breeding. Genetics Selection Evolution, 30(5), 423. doi:10.1186/1297-9686-30-5-423 es_ES
dc.description.references Bayon, Y., Fuente, L., & Primitivo, F. S. (1987). Direct and correlated responses to selection for large and small 6-week body weight in mice. Genetics Selection Evolution, 19(4), 445. doi:10.1186/1297-9686-19-4-445 es_ES
dc.description.references Högberg, A., & Rydhmer, L. (2000). A Genetic Study of Piglet Growth and Survival. Acta Agriculturae Scandinavica, Section A - Animal Science, 50(4), 300-303. doi:10.1080/090647000750069494 es_ES
dc.description.references Legarra A 2008. TM Threshold Model. Retrieved on 16 July 2015 from http://acteon.webs.upv.es/. es_ES
dc.description.references Gutiérrez, J., Nieto, B., Piqueras, P., Ibáñez, N., & Salgado, C. (2006). Genetic parameters for canalisation analysis of litter size and litter weight traits at birth in mice. Genetics Selection Evolution, 38(5), 445. doi:10.1186/1297-9686-38-5-445 es_ES
dc.description.references Fernández, J., Moreno, A., Gutiérrez, J. P., Nieto, B., Piqueras, P., & Salgado, C. (1998). Direct and correlated selection response for litter size and litter weight at birth in the first parity in mice. Livestock Production Science, 53(3), 217-223. doi:10.1016/s0301-6226(97)00146-2 es_ES
dc.description.references Zomeño, C., Hernández, P., & Blasco, A. (2013). Divergent selection for intramuscular fat content in rabbits. I. Direct response to selection1. Journal of Animal Science, 91(9), 4526-4531. doi:10.2527/jas.2013-6361 es_ES
dc.description.references Mormede, P., & Terenina, E. (2012). Molecular genetics of the adrenocortical axis and breeding for robustness. Domestic Animal Endocrinology, 43(2), 116-131. doi:10.1016/j.domaniend.2012.05.002 es_ES
dc.description.references Ibáñez-Escriche, N., Garcia, M., & Sorensen, D. (2009). GSEVM v.2: MCMC software to analyze genetically structured environmental variance models. Journal of Animal Breeding and Genetics, 127(3), 249-251. doi:10.1111/j.1439-0388.2009.00846.x es_ES
dc.description.references Cervantes, I., Gutiérrez, J. P., Fernández, I., & Goyache, F. (2010). Genetic relationships among calving ease, gestation length, and calf survival to weaning in the Asturiana de los Valles beef cattle breed1. Journal of Animal Science, 88(1), 96-101. doi:10.2527/jas.2009-2066 es_ES
dc.description.references Perrier G 2003. Influence de l’homogénéité de la portée sur la croissance et la viabilité des lapereaux de faible poids à la naissance. Proceedings of the 10èmes Journées de la recherche cunicole, 19–20 November 2003, Paris, France, pp. 119–122. es_ES
dc.description.references Moreno, A., Ibáñez-Escriche, N., García-Ballesteros, S., Salgado, C., Nieto, B., & Gutiérrez, J. P. (2012). Correlated genetic trend in the environmental variability of weight traits in mice. Livestock Science, 148(1-2), 189-195. doi:10.1016/j.livsci.2012.05.009 es_ES
dc.description.references Damgaard, L. H., Rydhmer, L., Løvendahl, P., & Grandinson, K. (2003). Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling1. Journal of Animal Science, 81(3), 604-610. doi:10.2527/2003.813604x es_ES
dc.description.references HILL, W. G., & MULDER, H. A. (2010). Genetic analysis of environmental variation. Genetics Research, 92(5-6), 381-395. doi:10.1017/s0016672310000546 es_ES
dc.description.references Jaffrezic, F., White, I. M. S., Thompson, R., & Hill, W. G. (2000). A Link Function Approach to Model Heterogeneity of Residual Variances Over Time in Lactation Curve Analyses. Journal of Dairy Science, 83(5), 1089-1093. doi:10.3168/jds.s0022-0302(00)74973-3 es_ES
dc.description.references García ML , Argente MJ , Muelas R , Birlanga V and Blasco A 2012. Effect of divergent selection for residual variance of litter size on health status and welfare. Proceedings of the 10th World Rabbit Congress, 3–6 September 2012, Sharm El- Sheikh, Egypt, pp. 103–106. es_ES
dc.description.references Larzul, C., Ducrocq, V., Tudela, F., Juin, H., & Garreau, H. (2014). The length of productive life can be modified through selection: An experimental demonstration in the rabbit1. Journal of Animal Science, 92(6), 2395-2401. doi:10.2527/jas.2013-7216 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem