- -

Control de trayectorias basado en álgebra lineal

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control de trayectorias basado en álgebra lineal

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Scaglia, G. J. E. es_ES
dc.contributor.author Serrano, M. E. es_ES
dc.contributor.author Albertos Pérez, Pedro es_ES
dc.date.accessioned 2020-10-05T11:45:22Z
dc.date.available 2020-10-05T11:45:22Z
dc.date.issued 2020-09-30
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/151137
dc.description.abstract [ES] En este tutorial se resumen las principales características de una nueva metodología de diseño de sistemas de control para el seguimiento de trayectorias en procesos no lineales. Esta metodología, denominada LAB (Linear Algebra Based), fue presentada por los autores hace más de diez años y ha tenido una fuerte repercusión por su sencillez y facilidad de aplicación, si bien no es aplicable para algunos problemas de seguimiento en sistemas no lineales. Se exponen las etapas en el diseño de un controlador LAB, tanto en tiempo continuo como en discreto. La aplicación al control de la trayectoria de un robot móvil, en tiempo continuo, sirve para ilustrar el desarrollo e implementación del control. Se analizan algunas propiedades del sistema controlado y se resaltan las condiciones de aplicación. Numerosas referencias facilitan el desarrollo de algunas características y su aplicación en diversos campos de la robótica y del control de procesos en general. es_ES
dc.description.abstract [EN] In this tutorial, the main features of a new control design methodology for tracking control in nonlinear processes is summarized. The so called LAB (Linear Algebra Based) methodology was introduced by the authors more than ten years ago and it has been accepted and used by many researchers mainly due to its simplicity and easy application. Nevertheless, it is not applicable to all the tracking problems dealing with nonlinear systems. The LAB controller design procedure, both in continuous time and discretetime, is outlined. The design of the trajectory control of a mobile robot illustrates the procedure as well as its implementation. Some properties of the controlled process are discussed and the problem requirements for a successful application are pointed out. Several references allow a deeper analysis of the controlled plant features as well as its application in a variety of processes, either in robotics or in process control. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Trajectory control es_ES
dc.subject Feedforward control es_ES
dc.subject Feedback control es_ES
dc.subject Disturbances es_ES
dc.subject Model uncertainty es_ES
dc.subject Model based control es_ES
dc.subject Control de trayectorias es_ES
dc.subject Control por prealimentación es_ES
dc.subject Control por realimentación es_ES
dc.subject Perturbaciones es_ES
dc.subject Incertidumbre en el modelo es_ES
dc.subject Control basado en modelo es_ES
dc.title Control de trayectorias basado en álgebra lineal es_ES
dc.title.alternative Linear Algebra Based trajectory control es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/riai.2020.13584
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Automática e Informática Industrial - Institut Universitari d'Automàtica i Informàtica Industrial es_ES
dc.description.bibliographicCitation Scaglia, GJE.; Serrano, ME.; Albertos Pérez, P. (2020). Control de trayectorias basado en álgebra lineal. Revista Iberoamericana de Automática e Informática industrial. 17(4):344-353. https://doi.org/10.4995/riai.2020.13584 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/riai.2020.13584 es_ES
dc.description.upvformatpinicio 344 es_ES
dc.description.upvformatpfin 353 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\13584 es_ES
dc.description.references Apostol, T., 1967. CALCULUS, One -Variable Calculus, with an introduction to Linear Algebra. Blaisdell Publishing Company. es_ES
dc.description.references Battilotti, S., Califano, C., 2004. A constructive condition for dynamic feedback linearization. Systems & control letters 52(5), 329-338. https://doi.org/10.1016/j.sysconle.2004.02.009 es_ES
dc.description.references Bouhenchir, H., Cabassud, M., Le Lann, M.-V., 2006. Predictive functional control for the temperature control of a chemical batch reactor. Computers & Chemical Engineering 30 (6-7), 1141-1154. https://doi.org/10.1016/j.compchemeng.2006.02.014 es_ES
dc.description.references Brockett, R., 1965. Poles, zeros, and feedback: State space interpretation. IEEE Transactions on Automatic Control 10(2), 129-135. https://doi.org/10.1109/TAC.1965.1098118 es_ES
dc.description.references Charlet, B., Levine, J., Marino, R., 1988. Dynamic feedback linearization with application to aircraft control. Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA 1, 701-705. es_ES
dc.description.references Chwa, D., 2004. Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates. IEEE transactions on control systems technology 12 (4), 637-644. https://doi.org/10.1109/TCST.2004.824953 es_ES
dc.description.references den Boom, T. J. J. V., 1998. On feedback linearization in LMI-based nonlinear MPC. In Proceedings of the 1998 American Control Conference 3, 1684-1688. es_ES
dc.description.references Devasia, S., Chen, D., B., P., 1996. Nonlinear inversion-based output tracking. IEEE Transactions on Automatic Control 41(7), 930-942. https://doi.org/10.1109/9.508898 es_ES
dc.description.references Fernandez, M. C., Romoli, S., Pantano, M. N., Ortiz, O. A., Patiño, D., Scaglia,G. J., 2018. A new approach for nonlinear multivariable fed-batch bioprocess trajectory tracking control. Automatic Control and Computer Sciences 52 (1), 13-24. https://doi.org/10.3103/S0146411618010030 es_ES
dc.description.references Francis, B. A., 1977. The linear multivariable regulator problem. SIAM Journal on Control and Optimization 15(3), 486-505. https://doi.org/10.1137/0315033 es_ES
dc.description.references Fukao, T., Nakagawa, H., Adachi, N., 2000. Adaptive tracking control of a nonholonomic mobile robot. IEEE transactions on Robotics and Automation 16 (5), 609-615. https://doi.org/10.1109/70.880812 es_ES
dc.description.references Gandolfo, D., Rosales, C., Patiño, D., Scaglia, G., Jordan, M., 2014. Trajectory tracking control of a pvtol aircraft based on linear algebra theory. Asian Journal of Control 16 (6), 1849-1858. es_ES
dc.description.references https://doi.org/10.1002/asjc.819 es_ES
dc.description.references Ghandan, R., Blankenship, G. L., 1993. Adaptive approximate tracking and regulation of nonlinear systems. Proceedings of 32nd IEEE Conference on Decision and Control 1, 2654-2659. es_ES
dc.description.references Hepburn, J., Wonham, W., 1984. Error feedback and internal models on dierentiable manifolds. IEEE Transactions on Automatic Control 29(5), 397-403. https://doi.org/10.1109/TAC.1984.1103563 es_ES
dc.description.references Huang, R., Zhu, J. J., 2009. Time-varying high-gain trajectory linearization observer design. Proceedings of American Control Conference 1, 4628-4635. https://doi.org/10.1109/ACC.2009.5160252 es_ES
dc.description.references Isidori, A., Byrnes, C. I., 1990. Output regulation of nonlinear systems. IEEE transactions on Automatic Control, 35(2), 131-140. https://doi.org/10.1109/9.45168 es_ES
dc.description.references Kanayama, Y., Kimura, Y., Miyazaki, F., Noguchi, T., 1990. A stable tracking control method for an autonomous mobile robot. In: Proceedings. IEEE International Conference on Robotics and Automation. IEEE, pp. 384-389. es_ES
dc.description.references Khalil, H., 2002. Nonlinear Systems. Prentice Hall. es_ES
dc.description.references Lee, H. G., Arapostathis, A., I.Marcus, S., 2003. An algorithm for linearization of discrete-time systems via restricted dynamic feedback. In Proceedings of 42nd IEEE International Conference on Decision and Control 2, 1362-1367. es_ES
dc.description.references Levine, J., Marino, R., 1990. On dynamic feedback linearization in r/sup 4. In Proceedings 29th IEEE Conference on Decision and Control IEEE. Honolulu, Hawaii. 1, 2088-2090. https://doi.org/10.1109/CDC.1990.203992 es_ES
dc.description.references Li, X. S., Li, Y. H., Li, X., Peng, J., Li, C. X., 2012. Robust trajectory linearization control design for unmanned aerial vehicle path following. Systems Engineering and Electronics 34(4), 767-772. es_ES
dc.description.references Li, Z., Deng, J., Lu, R., Xu, Y., Bai, J., Su, C.-Y., 2015. Trajectory-tracking control of mobile robot systems incorporating neural-dynamic optimized model predictive approach. IEEE Transactions on Systems, Man, and Cybernetics: Systems 46 (6), 740-749. https://doi.org/10.1109/TSMC.2015.2465352 es_ES
dc.description.references Lustosa, L. R., Defaÿ, F., Moschetta, J. M., 2017. The feasibility issue in trajectory tracking by means of regions-of-attraction-based gain scheduling. IFAC-PapersOnLine 50(1), 11504-11508. https://doi.org/10.1016/j.ifacol.2017.08.1609 es_ES
dc.description.references Moore, J., Cory, R., Tedrake, R., 2014. Robust post-stall perching with a simple fixed-wing glider using LQR-Trees. Bioinspiration & biomimetics 9(2), 025013. https://doi.org/10.1088/1748-3182/9/2/025013 es_ES
dc.description.references Panahandeh, P., Alipour, K., Tarvirdizadeh, B., Hadi, A., 2019. A kinematic lyapunov-based controller to posture stabilization of wheeled mobile robots. Mechanical Systems and Signal Processing 134, 106319. https://doi.org/10.1016/j.ymssp.2019.106319 es_ES
dc.description.references Pantano, M. N., Fernandez, M. C., Serrano, M. E., Ortiz, O. A., Scaglia, G. J., 2018. Tracking control of optimal profiles in a nonlinear fed-catch bioprocess under parametric uncertainty and process disturbances. Industrial & Engineering Chemistry Research 57 (32), 11130-11140. https://doi.org/10.1021/acs.iecr.8b01791 es_ES
dc.description.references Pantano, M. N., Fernández, M. C., Serrano, M. E., Ortíz, O. A., Scaglia, G. J. E., 2019. Trajectory tracking controller for a nonlinear fed-batch bioprocess. Revista Ingeniería Electrónica, Automática y Comunicaciones ISSN:1815-5928 38 (1), 78. es_ES
dc.description.references Proaño, P., Capito, L., Rosales, A., Camacho, O., 2015. Sliding mode control:Implementation like pid for trajectory-tracking for mobile robots. In: 2015 Asia-Pacific Conference on Computer Aided System Engineering. IEEE, pp.220-225. https://doi.org/10.1109/APCASE.2015.46 es_ES
dc.description.references Rojas, O. J., Goodwin, G. C., 2001. Preliminary analysis of a nonlinear control scheme related to feedback linearization. In Proceedings of the 40th IEEE Conference on Decision and Control 2, 1743-1748. es_ES
dc.description.references Rosales, A., Scaglia, G., Mut, V., di Sciascio, F., 2009. Navegación de robots móviles en entornos no estructurados utilizando álgebra lineal. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(2), 79-88. https://doi.org/10.1016/S1697-7912(09)70096-2 es_ES
dc.description.references Rosales, C., Gandolfo, D., Scaglia, G., Jordan, M., Carelli, R., 2015. Trajectory tracking of a mini four-rotor helicopter in dynamic environments-a linear algebra approach. Robotica 33 (8), 1628-1652. https://doi.org/10.1017/S0263574714000952 es_ES
dc.description.references Scaglia, G., Montoya, L. Q., Mut, V., di Sciascio, F., 2009. Numerical methods based controller design for mobile robots. Robotica 27 (2), 269-279. https://doi.org/10.1017/S0263574708004669 es_ES
dc.description.references Scaglia, G., Quintero, O. L., Mut, V., di Sciascio, F., 2008. Numerical methods based controller design for mobile robots. IFAC Proceedings Volumes 41 (2), 4820 - 4827. https://doi.org/10.3182/20080706-5-KR-1001.00810 es_ES
dc.description.references Scaglia, G., Serrano, E., Rosales, A., Albertos, P., 2015. Linear interpolation based controller design for trajectory tracking under uncertainties: Application to mobile robots. Control Engineering Practice 45, 123-132. https://doi.org/10.1016/j.conengprac.2015.09.010 es_ES
dc.description.references Scaglia, G., Serrano, E., Rosales, A., Albertos, P., 2019. Tracking control design in nonlinear multivariable systems: Robotic applications. Mathematical Problems in Engineering 2019. https://doi.org/10.1155/2019/8643515 es_ES
dc.description.references Scaglia, G., Serrano, M., Albertos, P., 2020. Linear Algebra Based Controllers: Design and Applications. Springer International Publishing. URL: https://books.google.es/books?id=ELzoDwAAQBAJ , https://doi.org/10.1007/978-3-030-42818-1 es_ES
dc.description.references Serrano, M. E., Godoy, S. A., Quintero, L., Scaglia, G. J., 2017. Interpolation based controller for trajectory tracking in mobile robots. Journal of Intelligent & Robotic Systems 86 (3-4), 569-581. https://doi.org/10.1007/s10846-016-0422-4 es_ES
dc.description.references Serrano, M. E., Scaglia, G. J., Godoy, S. A., Mut, V., Ortiz, O. A., 2013. Trajectory tracking of underactuated surface vessels: A linear algebra approach. IEEE Transactions on Control Systems Technology 22 (3), 1103-1111. https://doi.org/10.1109/TCST.2013.2271505 es_ES
dc.description.references Silverman, L., 1968. Properties and application of inverse systems. IEEE transactions on Automatic Control 13(4), 436-437. https://doi.org/10.1109/TAC.1968.1098943 es_ES
dc.description.references Silverman, L., 1969. Inversion of multivariable linear systems. IEEE transactions on Automatic Control 14(3), 270-276. https://doi.org/10.1109/TAC.1969.1099169 es_ES
dc.description.references Sun, W., Tang, S., Gao, H., Zhao, J., 2016. Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Transactions on Control Systems Technology 24 (6), 2059-2069. https://doi.org/10.1109/TCST.2016.2519282 es_ES
dc.description.references Xingling, S., Honglun, W., 2016. Trajectory linearization control based output tracking method for nonlinear uncertain system using linear extended state observer. Asian Journal of Control 18(1), 316-327. https://doi.org/10.1002/asjc.1053 es_ES
dc.description.references Zeng, G., Hunt, L. R., 2000. Stable inversion for nonlinear discrete-time systems. IEEE Transactions on Automatic Control 45(6), 1216-1220. https://doi.org/10.1109/9.863610 es_ES
dc.description.references Zhu, J. J., Banker, B., Hall, C., 2000. X-33 ascent flight control design by trajectory linearization-a singular perturbation approach. Proceedings of AIAA guidance, navigation, and control conference and exhibit 1, 4159. https://doi.org/10.2514/6.2000-4159 es_ES
dc.description.references Zhu, J. J., Funston, K., Hall, C. E., Hodel, A. S., 2001. X-33 entry flight control design by trajectory linearization- a singular perturbation approach. Guidanceand control 1, 151-170. https://doi.org/10.2514/6.2000-4159 es_ES
dc.description.references Zhu, L., Jiang, C. S., Xue, Y. L., 2008. Robust adaptive trajectory linearization control for aerospace vehicle using single hidden layer neutral networks. Acta Armamentarii 29(1), 52-56. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem