- -

Single-molecule portrait of DNA and RNA double helices

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Single-molecule portrait of DNA and RNA double helices

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Arias-Gonzalez, J. R. es_ES
dc.date.accessioned 2020-10-21T03:31:42Z
dc.date.available 2020-10-21T03:31:42Z
dc.date.issued 2014-10 es_ES
dc.identifier.issn 1757-9694 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152722
dc.description This is a pre-copyedited, author-produced version of an article accepted for publication in Integrative Biology following peer review. The version of record Arias-Gonzalez, J. Ricardo. 2014. Single-Molecule Portrait of DNA and RNA Double Helices. Integr. Biol. 6 (10). Oxford University Press (OUP): 904 25. doi:10.1039/c4ib00163j is available online at: https://doi.org/10.1039/c4ib00163j es_ES
dc.description.abstract [EN] The composition and geometry of the genetic information carriers were described as double-stranded right helices sixty years ago. The flexibility of their sugar¿phosphate backbones and the chemistry of their nucleotide subunits, which give rise to the RNA and DNA polymers, were soon reported to generate two main structural duplex states with biological relevance: the so-called A and B forms. Double-stranded (ds) RNA adopts the former whereas dsDNA is stable in the latter. The presence of flexural and torsional stresses in combination with environmental conditions in the cell or in the event of specific sequences in the genome can, however, stabilize other conformations. Single-molecule manipulation, besides affording the investigation of the elastic response of these polymers, can test the stability of their structural states and transition models. This approach is uniquely suited to understanding the basic features of protein binding molecules, the dynamics of molecular motors and to shedding more light on the biological relevance of the information blocks of life. Here, we provide a comprehensive single-molecule analysis of DNA and RNA double helices in the context of their structural polymorphism to set a rigorous interpretation of their material response both inside and outside the cell. From early knowledge of static structures to current dynamic investigations, we review their phase transitions and mechanochemical behaviour and harness this fundamental knowledge not only through biological sciences, but also for Nanotechnology and Nanomedicine. es_ES
dc.description.sponsorship We are sincerely indebted to S. Hormeno, F. Moreno-Herrero, B. Ibarra, J. L. Carrascosa, J. M. Valpuesta, M. Fuentes-Perez and C. Carrasco for their work throughout the years. C. Flors and A. Villasante are acknowledged for critical revision. This work was supported by Fundacion IMDEA Nanociencia. es_ES
dc.language Inglés es_ES
dc.publisher Oxford University Press es_ES
dc.relation.ispartof Integrative Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject DNA es_ES
dc.subject RNA es_ES
dc.subject Double-stranded es_ES
dc.subject Single-molecule es_ES
dc.subject Structure es_ES
dc.subject Mechanics es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Single-molecule portrait of DNA and RNA double helices es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c4ib00163j es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Arias-Gonzalez, JR. (2014). Single-molecule portrait of DNA and RNA double helices. Integrative Biology. 6(10):904-925. https://doi.org/10.1039/c4ib00163j es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c4ib00163j es_ES
dc.description.upvformatpinicio 904 es_ES
dc.description.upvformatpfin 925 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 10 es_ES
dc.identifier.pmid 25174412 es_ES
dc.relation.pasarela S\408065 es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Ivanov, V. I., Minchenkova, L. E., Minyat, E. E., Frank-Kamenetskii, M. D., & Schyolkina, A. K. (1974). The B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 87(4), 817-833. doi:10.1016/0022-2836(74)90086-2 es_ES
dc.description.references FRANKLIN, R. E., & GOSLING, R. G. (1953). Molecular Configuration in Sodium Thymonucleate. Nature, 171(4356), 740-741. doi:10.1038/171740a0 es_ES
dc.description.references WATSON, J. D., & CRICK, F. H. C. (1953). Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid. Nature, 171(4356), 737-738. doi:10.1038/171737a0 es_ES
dc.description.references ARNOTT, S., FULLER, W., HODGSON, A., & PRUTTON, I. (1968). Molecular Conformations and Structure Transitions of RNA Complementary Helices and their Possible Biological Significance. Nature, 220(5167), 561-564. doi:10.1038/220561a0 es_ES
dc.description.references HAMILTON, L. D. (1968). DNA: Models and Reality. Nature, 218(5142), 633-637. doi:10.1038/218633a0 es_ES
dc.description.references Leslie, A. G. W., Arnott, S., Chandrasekaran, R., & Ratliff, R. L. (1980). Polymorphism of DNA double helices. Journal of Molecular Biology, 143(1), 49-72. doi:10.1016/0022-2836(80)90124-2 es_ES
dc.description.references Girod, J. C., Johnson, W. C., Huntington, S. K., & Maestre, M. F. (1973). Conformation of deoxyribonucleic acid in alcohol solutions. Biochemistry, 12(25), 5092-5096. doi:10.1021/bi00749a011 es_ES
dc.description.references Ivanov, V. I., Minchenkova, L. E., Schyolkina, A. K., & Poletayev, A. I. (1973). Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers, 12(1), 89-110. doi:10.1002/bip.1973.360120109 es_ES
dc.description.references Jovin, T. M., Soumpasis, D. M., & McIntosh, L. P. (1987). The Transition Between B-DNA and Z-DNA. Annual Review of Physical Chemistry, 38(1), 521-558. doi:10.1146/annurev.pc.38.100187.002513 es_ES
dc.description.references Hall, K., Cruz, P., Tinoco, I., Jovin, T. M., & van de Sande, J. H. (1984). ‘Z-RNA’—a left-handed RNA double helix. Nature, 311(5986), 584-586. doi:10.1038/311584a0 es_ES
dc.description.references W. Saenger , Principles of nucleic acid structure , Springer-Verlag , 2nd edn, 1984 es_ES
dc.description.references Trantı́rek, L., Štefl, R., Vorlı́čková, M., Koča, J., Sklenářář, V., & Kypr, J. (2000). An A -type double helix of DNA having B -type puckering of the deoxyribose rings 1 1Edited by I. Tinoco. Journal of Molecular Biology, 297(4), 907-922. doi:10.1006/jmbi.2000.3592 es_ES
dc.description.references Bustamante, C., Bryant, Z., & Smith, S. B. (2003). Ten years of tension: single-molecule DNA mechanics. Nature, 421(6921), 423-427. doi:10.1038/nature01405 es_ES
dc.description.references Forth, S., Sheinin, M. Y., Inman, J., & Wang, M. D. (2013). Torque Measurement at the Single-Molecule Level. Annual Review of Biophysics, 42(1), 583-604. doi:10.1146/annurev-biophys-083012-130412 es_ES
dc.description.references Heller, I., Hoekstra, T. P., King, G. A., Peterman, E. J. G., & Wuite, G. J. L. (2014). Optical Tweezers Analysis of DNA–Protein Complexes. Chemical Reviews, 114(6), 3087-3119. doi:10.1021/cr4003006 es_ES
dc.description.references Strick, T. R., Allemand, J.-F., Bensimon, D., & Croquette, V. (2000). Stress-Induced Structural Transitions in DNA and Proteins. Annual Review of Biophysics and Biomolecular Structure, 29(1), 523-543. doi:10.1146/annurev.biophys.29.1.523 es_ES
dc.description.references Allemand, J.-F., Bensimon, D., & Croquette, V. (2003). Stretching DNA and RNA to probe their interactions with proteins. Current Opinion in Structural Biology, 13(3), 266-274. doi:10.1016/s0959-440x(03)00067-8 es_ES
dc.description.references Seeman, N. C. (2003). DNA in a material world. Nature, 421(6921), 427-431. doi:10.1038/nature01406 es_ES
dc.description.references Hormeño, S., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2011). Mechanical Properties of High-G⋅C Content DNA with A-Type Base-Stacking. Biophysical Journal, 100(8), 1996-2005. doi:10.1016/j.bpj.2011.02.051 es_ES
dc.description.references Hormeño, S., Ibarra, B., Valpuesta, J. M., Carrascosa, J. L., & Ricardo Arias-Gonzalez, J. (2011). Mechanical stability of low-humidity single DNA molecules. Biopolymers, 97(4), 199-208. doi:10.1002/bip.21728 es_ES
dc.description.references Hormeño, S., Moreno-Herrero, F., Ibarra, B., Carrascosa, J. L., Valpuesta, J. M., & Arias-Gonzalez, J. R. (2011). Condensation Prevails over B-A Transition in the Structure of DNA at Low Humidity. Biophysical Journal, 100(8), 2006-2015. doi:10.1016/j.bpj.2011.02.049 es_ES
dc.description.references Oberstrass, F. C., Fernandes, L. E., & Bryant, Z. (2012). Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proceedings of the National Academy of Sciences, 109(16), 6106-6111. doi:10.1073/pnas.1113532109 es_ES
dc.description.references Allemand, J. F., Bensimon, D., Lavery, R., & Croquette, V. (1998). Stretched and overwound DNA forms a Pauling-like structure with exposed bases. Proceedings of the National Academy of Sciences, 95(24), 14152-14157. doi:10.1073/pnas.95.24.14152 es_ES
dc.description.references Pauling, L., & Corey, R. B. (1953). A Proposed Structure For The Nucleic Acids. Proceedings of the National Academy of Sciences, 39(2), 84-97. doi:10.1073/pnas.39.2.84 es_ES
dc.description.references Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., & Caron, F. o. (1996). DNA: An Extensible Molecule. Science, 271(5250), 792-794. doi:10.1126/science.271.5250.792 es_ES
dc.description.references Smith, S. B., Cui, Y., & Bustamante, C. (1996). Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules. Science, 271(5250), 795-799. doi:10.1126/science.271.5250.795 es_ES
dc.description.references Besteman, K., Hage, S., Dekker, N. H., & Lemay, S. G. (2007). Role of Tension and Twist in Single-Molecule DNA Condensation. Physical Review Letters, 98(5). doi:10.1103/physrevlett.98.058103 es_ES
dc.description.references Fire, A., Xu, S., Montgomery, M. K., Kostas, S. A., Driver, S. E., & Mello, C. C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 391(6669), 806-811. doi:10.1038/35888 es_ES
dc.description.references Montgomery, M. K., Xu, S., & Fire, A. (1998). RNA as a target of double-stranded RNA-mediated genetic interference in Caenorhabditis elegans. Proceedings of the National Academy of Sciences, 95(26), 15502-15507. doi:10.1073/pnas.95.26.15502 es_ES
dc.description.references Timmons, L., & Fire, A. (1998). Specific interference by ingested dsRNA. Nature, 395(6705), 854-854. doi:10.1038/27579 es_ES
dc.description.references Guo, P. (2010). The emerging field of RNA nanotechnology. Nature Nanotechnology, 5(12), 833-842. doi:10.1038/nnano.2010.231 es_ES
dc.description.references Herrero-Galán, E., Fuentes-Perez, M. E., Carrasco, C., Valpuesta, J. M., Carrascosa, J. L., Moreno-Herrero, F., & Arias-Gonzalez, J. R. (2012). Mechanical Identities of RNA and DNA Double Helices Unveiled at the Single-Molecule Level. Journal of the American Chemical Society, 135(1), 122-131. doi:10.1021/ja3054755 es_ES
dc.description.references C. R. Calladine , H. R.Drew , B. F.Luise and A. A.Travers , Understanding DNA. The molecule and how it works , Elsevier, Academic Press , 3rd edn, 2004 es_ES
dc.description.references Brahms, J., & Mommaerts, W. F. H. M. (1964). A study of conformation of nucleic acids in solution by means of circular dichroism. Journal of Molecular Biology, 10(1), 73-88. doi:10.1016/s0022-2836(64)80029-2 es_ES
dc.description.references Minyat, E. E., Ivanov, V. I., Kritzyn, A. M., Minchenkova, L. E., & Schyolkina, A. K. (1979). Spermine and spermidine-induced B̄ to Ā transition of DNA in solution. Journal of Molecular Biology, 128(3), 397-409. doi:10.1016/0022-2836(79)90094-9 es_ES
dc.description.references Rupprecht, A., Piškur, J., Schultz, J., Nordenskiöld, L., Song, Z., & Lahajnar, G. (1994). Mechanochemical study of conformational transitions and melting of Li-, Na-, K-, and CsDNA fibers in ethanol-water solutions. Biopolymers, 34(7), 897-920. doi:10.1002/bip.360340709 es_ES
dc.description.references Albiser, G., Lamiri, A., & Premilat, S. (2001). The A–B transition: temperature and base composition effects on hydration of DNA. International Journal of Biological Macromolecules, 28(3), 199-203. doi:10.1016/s0141-8130(00)00160-4 es_ES
dc.description.references Usatyi, A. F., & Shlyakhtenko, L. S. (1974). Melting of DNA in ethanol-water solutions. Biopolymers, 13(12), 2435-2446. doi:10.1002/bip.1974.360131204 es_ES
dc.description.references Calladine, C. R., & Drew, H. R. (1984). A base-centred explanation of the B-to-A transition in DNA. Journal of Molecular Biology, 178(3), 773-782. doi:10.1016/0022-2836(84)90251-1 es_ES
dc.description.references Lu, X.-J., Shakked, Z., & Olson, W. K. (2000). A-form Conformational Motifs in Ligand-bound DNA Structures. Journal of Molecular Biology, 300(4), 819-840. doi:10.1006/jmbi.2000.3690 es_ES
dc.description.references Setlow, P. (1992). DNA in dormant spores of Bacillus species is in an A-like conformation. Molecular Microbiology, 6(5), 563-567. doi:10.1111/j.1365-2958.1992.tb01501.x es_ES
dc.description.references Abels, J. A., Moreno-Herrero, F., van der Heijden, T., Dekker, C., & Dekker, N. H. (2005). Single-Molecule Measurements of the Persistence Length of Double-Stranded RNA. Biophysical Journal, 88(4), 2737-2744. doi:10.1529/biophysj.104.052811 es_ES
dc.description.references Ban, C., Ramakrishnan, B., & Sundaralingam, M. (1994). Crystal structure of the highly distorted chimeric decamer r(C)d(CGGCGCCG)r(G).spermine complex — spermine binding to phosphate only and minor groove tertiary base-pairing. Nucleic Acids Research, 22(24), 5466-5476. doi:10.1093/nar/22.24.5466 es_ES
dc.description.references Cheetham, G. M. (1999). Structure of a Transcribing T7 RNA Polymerase Initiation Complex. Science, 286(5448), 2305-2309. doi:10.1126/science.286.5448.2305 es_ES
dc.description.references Zimmerman, S. B., & Pheiffer, B. H. (1981). A RNA.DNA hybrid that can adopt two conformations: an x-ray diffraction study of poly(rA).poly(dT) in concentrated solution or in fibers. Proceedings of the National Academy of Sciences, 78(1), 78-82. doi:10.1073/pnas.78.1.78 es_ES
dc.description.references Dickerson, R., Drew, H., Conner, B., Wing, R., Fratini, A., & Kopka, M. (1982). The anatomy of A-, B-, and Z-DNA. Science, 216(4545), 475-485. doi:10.1126/science.7071593 es_ES
dc.description.references Malenkov, G., Minchenkova, L., Minyat, E., Schyolkina, A., & Ivanov, V. (1975). The nature of the - transition of DNA in solution. FEBS Letters, 51(1-2), 38-42. doi:10.1016/0014-5793(75)80850-7 es_ES
dc.description.references Zimmerman, S. B., & Pheiffer, B. H. (1980). Does DNA adopt the C form in concentrated salt solutions or in organic solvent/water mixtures? An X-ray diffraction study of DNA fibers immersed in various media. Journal of Molecular Biology, 142(3), 315-330. doi:10.1016/0022-2836(80)90275-2 es_ES
dc.description.references Ivanov, V. I., & Minyat, E. E. (1981). The transitions between left- and right-handed forms of poly(dG-dC). Nucleic Acids Research, 9(18), 4783-4798. doi:10.1093/nar/9.18.4783 es_ES
dc.description.references Thomas, T. J., & Messner, R. P. (1986). A left-handed (Z) conformation of poly(dA-dC).poly(dG-dT) induced by polyamines. Nucleic Acids Research, 14(16), 6721-6733. doi:10.1093/nar/14.16.6721 es_ES
dc.description.references Wang, A. H.-J., Quigley, G. J., Kolpak, F. J., Crawford, J. L., van Boom, J. H., van der Marel, G., & Rich, A. (1979). Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature, 282(5740), 680-686. doi:10.1038/282680a0 es_ES
dc.description.references Popenda, M. (2004). High salt solution structure of a left-handed RNA double helix. Nucleic Acids Research, 32(13), 4044-4054. doi:10.1093/nar/gkh736 es_ES
dc.description.references Klump, H. H., & Jovin, T. M. (1987). Formation of a left-handed RNA double helix: energetics of the A-Z transition of poly[r(G-C)] in concentrated sodium perchlorate solutions. Biochemistry, 26(16), 5186-5190. doi:10.1021/bi00390a043 es_ES
dc.description.references Krzyżaniak, A., Barciszewski, J., Fürste, J. P., Bald, R., Erdmann, V. A., Salański, P., & Jurczak, J. (1994). A-Z-RNA conformational changes effected by high pressure. International Journal of Biological Macromolecules, 16(3), 159-162. doi:10.1016/0141-8130(94)90044-2 es_ES
dc.description.references Zarling, D. A., Calhoun, C. J., Hardin, C. C., & Zarling, A. H. (1987). Cytoplasmic Z-RNA. Proceedings of the National Academy of Sciences, 84(17), 6117-6121. doi:10.1073/pnas.84.17.6117 es_ES
dc.description.references Liu, L. F., & Wang, J. C. (1987). Supercoiling of the DNA template during transcription. Proceedings of the National Academy of Sciences, 84(20), 7024-7027. doi:10.1073/pnas.84.20.7024 es_ES
dc.description.references Rich, A., & Zhang, S. (2003). Z-DNA: the long road to biological function. Nature Reviews Genetics, 4(7), 566-572. doi:10.1038/nrg1115 es_ES
dc.description.references Hardin, C. C., Zarling, D. A., Puglisi, J. D., Trulson, M. O., Davis, P. W., & Tinoco, I. (1987). Stabilization of Z-RNA by chemical bromination and its recognition by anti-Z-DNA antibodies. Biochemistry, 26(16), 5191-5199. doi:10.1021/bi00390a044 es_ES
dc.description.references Rich, A., Nordheim, A., & Wang, A. H. J. (1984). The Chemistry and Biology of Left-Handed Z-DNA. Annual Review of Biochemistry, 53(1), 791-846. doi:10.1146/annurev.bi.53.070184.004043 es_ES
dc.description.references Brown, B. A., Lowenhaupt, K., Wilbert, C. M., Hanlon, E. B., & Rich, A. (2000). The Zalpha domain of the editing enzyme dsRNA adenosine deaminase binds left-handed Z-RNA as well as Z-DNA. Proceedings of the National Academy of Sciences, 97(25), 13532-13536. doi:10.1073/pnas.240464097 es_ES
dc.description.references Placido, D., Brown, B. A., Lowenhaupt, K., Rich, A., & Athanasiadis, A. (2007). A Left-Handed RNA Double Helix Bound by the Zα Domain of the RNA-Editing Enzyme ADAR1. Structure, 15(4), 395-404. doi:10.1016/j.str.2007.03.001 es_ES
dc.description.references Arnott, S., & Hukins, D. W. L. (1972). Optimised parameters for A-DNA and B-DNA. Biochemical and Biophysical Research Communications, 47(6), 1504-1509. doi:10.1016/0006-291x(72)90243-4 es_ES
dc.description.references Arnott, S., Hukins, D. W. L., & Dover, S. D. (1972). Optimised parameters for RNA double-helices. Biochemical and Biophysical Research Communications, 48(6), 1392-1399. doi:10.1016/0006-291x(72)90867-4 es_ES
dc.description.references ARNOTT, S., & HUKINS, D. W. L. (1969). Conservation of Conformation in Mono and Poly-nucleotides. Nature, 224(5222), 886-888. doi:10.1038/224886a0 es_ES
dc.description.references Cheatham, T. E., Crowley, M. F., Fox, T., & Kollman, P. A. (1997). A molecular level picture of the stabilization of A-DNA in mixed ethanol-water solutions. Proceedings of the National Academy of Sciences, 94(18), 9626-9630. doi:10.1073/pnas.94.18.9626 es_ES
dc.description.references Mazur, A. K. (2003). TitrationinSilicoof Reversible B ↔ A Transitions in DNA. Journal of the American Chemical Society, 125(26), 7849-7859. doi:10.1021/ja034550j es_ES
dc.description.references Ng, H.-L., Kopka, M. L., & Dickerson, R. E. (2000). The structure of a stable intermediate in the A left-right-arrow B DNA helix transition. Proceedings of the National Academy of Sciences, 97(5), 2035-2039. doi:10.1073/pnas.040571197 es_ES
dc.description.references Vargason, J. M., Henderson, K., & Ho, P. S. (2001). A crystallographic map of the transition from B-DNA to A-DNA. Proceedings of the National Academy of Sciences, 98(13), 7265-7270. doi:10.1073/pnas.121176898 es_ES
dc.description.references Saenger, W., Hunter, W. N., & Kennard, O. (1986). DNA conformation is determined by economics in the hydration of phosphate groups. Nature, 324(6095), 385-388. doi:10.1038/324385a0 es_ES
dc.description.references Pastor, N. (2005). The B- to A-DNA Transition and the Reorganization of Solvent at the DNA Surface. Biophysical Journal, 88(5), 3262-3275. doi:10.1529/biophysj.104.058339 es_ES
dc.description.references Hunter, C. A. (1993). Sequence-dependent DNA Structure. Journal of Molecular Biology, 230(3), 1025-1054. doi:10.1006/jmbi.1993.1217 es_ES
dc.description.references Mahendrasingam, A., Rhodes, N. J., Goodwin, D. C., Nave, C., Pigram, W. J., Fuller, W., … Vergne, J. (1983). Conformational transitions in oriented fibres of the synthetic polynucleotide poly[d(AT)]·poly[d(AT)] double helix. Nature, 301(5900), 535-537. doi:10.1038/301535a0 es_ES
dc.description.references Thomas, G. J., & Benevides, J. M. (1985). An A-helix structure for poly(dA-dT) · poly(dA-dT). Biopolymers, 24(6), 1101-1105. doi:10.1002/bip.360240613 es_ES
dc.description.references Borovok, N., Molotsky, T., Ghabboun, J., Cohen, H., Porath, D., & Kotlyar, A. (2007). Poly(dG)-poly(dC) DNA appears shorter than poly(dA)-poly(dT) and possibly adopts an A-related conformation on a mica surface under ambient conditions. FEBS Letters, 581(30), 5843-5846. doi:10.1016/j.febslet.2007.11.058 es_ES
dc.description.references Mazur, A. K. (2005). Electrostatic Polymer Condensation and the A/B Polymorphism in DNA:  Sequence Effects. Journal of Chemical Theory and Computation, 1(2), 325-336. doi:10.1021/ct049926d es_ES
dc.description.references Minchenkova, L. E., Schyolkina, A. K., Chernov, B. K., & Ivanov, V. I. (1986). CC/GG Contacts Facilitate the B to A Transition of DMA in Solution. Journal of Biomolecular Structure and Dynamics, 4(3), 463-476. doi:10.1080/07391102.1986.10506362 es_ES
dc.description.references NARA-INUI, H., AKUTSU, H., & KYOGOKU, Y. (1985). Alcohol Induced B-A Transition of DNAs with Different Base Compositions Studied by Circular Dichroism. The Journal of Biochemistry, 98(3), 629-636. doi:10.1093/oxfordjournals.jbchem.a135319 es_ES
dc.description.references Nishimura, Y., Torigoe, C., & Tsuboi, M. (1985). An A-form poly(dG) · poly(dC) in H2O solution. Biopolymers, 24(9), 1841-1844. doi:10.1002/bip.360240913 es_ES
dc.description.references Pilet, J., & Brahms, J. (1973). Investigation of DNA structural changes by infrared spectroscopy. Biopolymers, 12(2), 387-403. doi:10.1002/bip.1973.360120215 es_ES
dc.description.references Tolstorukov, M. Y., Ivanov, V. I., Malenkov, G. G., Jernigan, R. L., & Zhurkin, V. B. (2001). Sequence-Dependent B↔A Transition in DNA Evaluated with Dimeric and Trimeric Scales. Biophysical Journal, 81(6), 3409-3421. doi:10.1016/s0006-3495(01)75973-5 es_ES
dc.description.references Deng, H. (2000). Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy. Nucleic Acids Research, 28(17), 3379-3385. doi:10.1093/nar/28.17.3379 es_ES
dc.description.references Jain, S., Zon, G., & Sundaralingam, M. (1989). Base only binding of spermine in the deep groove of the A-DNA octamer d(GTGTACAC). Biochemistry, 28(6), 2360-2364. doi:10.1021/bi00432a002 es_ES
dc.description.references Ouameur, A. A., & Tajmir-Riahi, H.-A. (2004). Structural Analysis of DNA Interactions with Biogenic Polyamines and Cobalt(III)hexamine Studied by Fourier Transform Infrared and Capillary Electrophoresis. Journal of Biological Chemistry, 279(40), 42041-42054. doi:10.1074/jbc.m406053200 es_ES
dc.description.references Real, A. N., & Greenall, R. J. (2004). Influence of Spermine on DNA Conformation in a Molecular Dynamics Trajectory of d(CGCGAATTCGCG)2: Major Groove Binding by One Spermine Molecule Delays the A→B Transition. Journal of Biomolecular Structure and Dynamics, 21(4), 469-487. doi:10.1080/07391102.2004.10506941 es_ES
dc.description.references Bauer, C., & Wang, A. H.-J. (1997). Bridged cobalt amine complexes induce DNA conformational changes effectively. Journal of Inorganic Biochemistry, 68(2), 129-135. doi:10.1016/s0162-0134(97)00083-4 es_ES
dc.description.references Patel, M. M., & Anchordoquy, T. J. (2006). Ability of spermine to differentiate between DNA sequences—Preferential stabilization of A-tracts. Biophysical Chemistry, 122(1), 5-15. doi:10.1016/j.bpc.2006.02.001 es_ES
dc.description.references Thomas*, T., & Thomas, T. J. (2001). Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cellular and Molecular Life Sciences, 58(2), 244-258. doi:10.1007/pl00000852 es_ES
dc.description.references Cheatham, T. E., & Kollman, P. A. (1997). Insight into the stabilization of A-DNA by specific ion association: spontaneous B-DNA to A-DNA transitions observed in molecular dynamics simulations of d[ACCCGCGGGT]2 in the presence of hexaamminecobalt(III). Structure, 5(10), 1297-1311. doi:10.1016/s0969-2126(97)00282-7 es_ES
dc.description.references Bloomfield, V. A. (1997). DNA condensation by multivalent cations. Biopolymers, 44(3), 269-282. doi:10.1002/(sici)1097-0282(1997)44:3<269::aid-bip6>3.0.co;2-t es_ES
dc.description.references Robinson, H., & Wang, A. H.-J. (1996). Neomycin, Spermine and Hexaamminecobalt(III) Share Common Structural Motifs in Converting B- to A-DNA. Nucleic Acids Research, 24(4), 676-682. doi:10.1093/nar/24.4.676 es_ES
dc.description.references Xu, Q., Shoemaker, R. K., & Braunlin, W. H. (1993). Induction of B-A transitions of deoxyoligonucleotides by multivalent cations in dilute aqueous solution. Biophysical Journal, 65(3), 1039-1049. doi:10.1016/s0006-3495(93)81163-9 es_ES
dc.description.references Subirana, J. A., & Soler-López, M. (2003). Cations as Hydrogen Bond Donors: A View of Electrostatic Interactions in DNA. Annual Review of Biophysics and Biomolecular Structure, 32(1), 27-45. doi:10.1146/annurev.biophys.32.110601.141726 es_ES
dc.description.references Mei, H. Y., & Barton, J. K. (1988). Tris(tetramethylphenanthroline)ruthenium(II): a chiral probe that cleaves A-DNA conformations. Proceedings of the National Academy of Sciences, 85(5), 1339-1343. doi:10.1073/pnas.85.5.1339 es_ES
dc.description.references Li, T.-K., Barbieri, C. M., Lin, H.-C., Rabson, A. B., Yang, G., Fan, Y., … Pilch, D. S. (2004). Drug Targeting of HIV-1 RNA·DNA Hybrid Structures:  Thermodynamics of Recognition and Impact on Reverse Transcriptase-Mediated Ribonuclease H Activity and Viral Replication†. Biochemistry, 43(30), 9732-9742. doi:10.1021/bi0497345 es_ES
dc.description.references Ivanov, V. I., Minchenkova, L. E., Burckhardt, G., Birch-Hirschfeld, E., Fritzsche, H., & Zimmer, C. (1996). The detection of B-form/A-form junction in a deoxyribonucleotide duplex. Biophysical Journal, 71(6), 3344-3349. doi:10.1016/s0006-3495(96)79527-9 es_ES
dc.description.references Burckhardt, G., Zimmer, C., & Luck, G. (1973). Conformation and reactivity of DNA V. pH-dependent conformational changes of DNA in complexes with poly-L-histidine: Transitions from B- to A-form and to a condensed state. FEBS Letters, 30(1), 35-39. doi:10.1016/0014-5793(73)80613-1 es_ES
dc.description.references FLORENTIEV, V. L., & IVANOV, V. I. (1970). RNA Polymerase: Two-step Mechanism with Overlapping Steps. Nature, 228(5271), 519-522. doi:10.1038/228519a0 es_ES
dc.description.references Yang, L., & Pettitt, B. M. (1996). B to A Transition of DNA on the Nanosecond Time Scale. The Journal of Physical Chemistry, 100(7), 2564-2566. doi:10.1021/jp953080f es_ES
dc.description.references beabealashvily, R. S., Ivanov, V. I., Minchenkova, L. E., & Savotchkina, L. P. (1972). RNA polymerase-DNA complexes I. The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis, 259(1), 35-40. doi:10.1016/0005-2787(72)90471-6 es_ES
dc.description.references G hler, T. (2005). Mutant p53 proteins bind DNA in a DNA structure-selective mode. Nucleic Acids Research, 33(3), 1087-1100. doi:10.1093/nar/gki252 es_ES
dc.description.references SUZUKI, M., LOAKES, D., & YAGI, N. (1996). DNA conformation and its changes upon binding transcription factors. Advances in Biophysics, 32, 53-72. doi:10.1016/0065-227x(96)84741-1 es_ES
dc.description.references Eom, S. H., Wang, J., & Steitz, T. A. (1996). Structure of Taq polymerase with DNA at the polymerase active site. Nature, 382(6588), 278-281. doi:10.1038/382278a0 es_ES
dc.description.references Doublié, S., Tabor, S., Long, A. M., Richardson, C. C., & Ellenberger, T. (1998). Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature, 391(6664), 251-258. doi:10.1038/34593 es_ES
dc.description.references Lee, K. S., Bumbaca, D., Kosman, J., Setlow, P., & Jedrzejas, M. J. (2008). Structure of a protein-DNA complex essential for DNA protection in spores of Bacillus species. Proceedings of the National Academy of Sciences, 105(8), 2806-2811. doi:10.1073/pnas.0708244105 es_ES
dc.description.references Mohr, S. C., Sokolov, N. V., He, C. M., & Setlow, P. (1991). Binding of small acid-soluble spore proteins from Bacillus subtilis changes the conformation of DNA from B to A. Proceedings of the National Academy of Sciences, 88(1), 77-81. doi:10.1073/pnas.88.1.77 es_ES
dc.description.references Nejedlý, K., Chládková, J., & Kypr, J. (2007). Photochemical probing of the B–A conformational transition in a linearized pUC19 DNA and its polylinker region. Biophysical Chemistry, 125(1), 237-246. doi:10.1016/j.bpc.2006.08.007 es_ES
dc.description.references Li, X. (2006). Carbon nanotubes selective destabilization of duplex and triplex DNA and inducing B-A transition in solution. Nucleic Acids Research, 34(13), 3670-3676. doi:10.1093/nar/gkl513 es_ES
dc.description.references Yang, X. (1999). Structural studies of atom-specific anticancer drugs acting on DNA. Pharmacology & Therapeutics, 83(3), 181-215. doi:10.1016/s0163-7258(99)00020-0 es_ES
dc.description.references Arscott, P. G., Ma, C., Wenner, J. R., & Bloomfield, V. A. (1995). DNA condensation by cobalt hexaammine(III) in alcohol-water mixtures: Dielectric constant and other solvent effects. Biopolymers, 36(3), 345-364. doi:10.1002/bip.360360309 es_ES
dc.description.references Lang, D. (1969). Collapse of single DNA molecules in ethanol. Journal of Molecular Biology, 46(1), 209-IN4. doi:10.1016/0022-2836(69)90069-2 es_ES
dc.description.references Lang, D., Taylor, T. N., Dobyan, D. C., & Gray, D. M. (1976). Dehydrated circular DNA: Electron microscopy of ethanol-condensed molecules. Journal of Molecular Biology, 106(1), 97-107. doi:10.1016/0022-2836(76)90302-8 es_ES
dc.description.references Piškur, J., & Rupprecht, A. (1995). Aggregated DNA in ethanol solution. FEBS Letters, 375(3), 174-178. doi:10.1016/0014-5793(95)01206-t es_ES
dc.description.references Pastré, D., Piétrement, O., Landousy, F., Hamon, L., Sorel, I., David, M.-O., … Le Cam, E. (2005). A new approach to DNA bending by polyamines and its implication in DNA condensation. European Biophysics Journal, 35(3), 214-223. doi:10.1007/s00249-005-0025-7 es_ES
dc.description.references Rouzina, I., & Bloomfield, V. A. (1998). DNA Bending by Small, Mobile Multivalent Cations. Biophysical Journal, 74(6), 3152-3164. doi:10.1016/s0006-3495(98)78021-x es_ES
dc.description.references Herbeck, R., Yu, T.-J., & Peticolas, W. L. (1976). Effect of crosslinking on the secondary structure of DNA. I. Crosslinking by photodimerization. Biochemistry, 15(12), 2656-2660. doi:10.1021/bi00657a027 es_ES
dc.description.references Zimmerman, S. B., & Pheiffer, B. H. (1979). A direct demonstration that the ethanol-induced transition of DNA is between the A and B forms: an X-ray diffraction study. Journal of Molecular Biology, 135(4), 1023-1027. doi:10.1016/0022-2836(79)90526-6 es_ES
dc.description.references J. A. Subirana , M.Chiva and R.Mayer , in Biomolecular Structure, Conformation, Function and Evolution , ed. R. Srinivasan , Pergamon Press , London , 1979 es_ES
dc.description.references Schnell, J. R., Berman, J., & Bloomfield, V. A. (1998). Insertion of Telomere Repeat Sequence Decreases Plasmid DNA Condensation by Cobalt (III) Hexaammine. Biophysical Journal, 74(3), 1484-1491. doi:10.1016/s0006-3495(98)77860-9 es_ES
dc.description.references Reich, Z., Ghirlando, R., & Minsky, A. (1991). Secondary conformational polymorphism of nucleic acids as a possible functional link between cellular parameters and DNA packaging processes. Biochemistry, 30(31), 7828-7836. doi:10.1021/bi00245a024 es_ES
dc.description.references Zavriev, S. K., Minchenkova, L. E., Frank-Kamenetskii, M. D., & Ivanov, V. I. (1978). On the flexibility of the boundaries between the A¯-form and B¯-form sections in DNA molecule. Nucleic Acids Research, 5(7), 2657-2664. doi:10.1093/nar/5.7.2657 es_ES
dc.description.references Potaman, V. N., Bannikov, Y. A., & Shlyachtenko, L. S. (1980). Sedimentation of DNA in ethanol-water solutions within the interval of B→A transition. Nucleic Acids Research, 8(3), 635-642. doi:10.1093/nar/8.3.635 es_ES
dc.description.references Ivanov, V. I., & Krylov, D. Y. (1992). [6] A-DNA in solution as studied by diverse approaches. Methods in Enzymology, 111-127. doi:10.1016/0076-6879(92)11008-7 es_ES
dc.description.references Wilson, R. W., & Bloomfield, V. A. (1979). Counterion-induced condensation of deoxyribonucleic acid. A light-scattering study. Biochemistry, 18(11), 2192-2196. doi:10.1021/bi00578a009 es_ES
dc.description.references Bloomfield, V. A., Wilson, R. W., & Rau, D. C. (1980). Polyelectrolyte effects in DNA condensation by polyamines. Biophysical Chemistry, 11(3-4), 339-343. doi:10.1016/0301-4622(80)87006-2 es_ES
dc.description.references Besteman, K., Van Eijk, K., & Lemay, S. G. (2007). Charge inversion accompanies DNA condensation by multivalent ions. Nature Physics, 3(9), 641-644. doi:10.1038/nphys697 es_ES
dc.description.references Neuman, K. C., & Nagy, A. (2008). Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, 5(6), 491-505. doi:10.1038/nmeth.1218 es_ES
dc.description.references Bustamante, C., Macosko, J. C., & Wuite, G. J. L. (2000). Grabbing the cat by the tail: manipulating molecules one by one. Nature Reviews Molecular Cell Biology, 1(2), 130-136. doi:10.1038/35040072 es_ES
dc.description.references Joo, C., Balci, H., Ishitsuka, Y., Buranachai, C., & Ha, T. (2008). Advances in Single-Molecule Fluorescence Methods for Molecular Biology. Annual Review of Biochemistry, 77(1), 51-76. doi:10.1146/annurev.biochem.77.070606.101543 es_ES
dc.description.references Van Mameren, J., Peterman, E. J. G., & Wuite, G. J. L. (2008). See me, feel me: methods to concurrently visualize and manipulate single DNA molecules and associated proteins. Nucleic Acids Research, 36(13), 4381-4389. doi:10.1093/nar/gkn412 es_ES
dc.description.references Ando, T., Uchihashi, T., & Scheuring, S. (2014). Filming Biomolecular Processes by High-Speed Atomic Force Microscopy. Chemical Reviews, 114(6), 3120-3188. doi:10.1021/cr4003837 es_ES
dc.description.references Moffitt, J. R., Chemla, Y. R., Smith, S. B., & Bustamante, C. (2008). Recent Advances in Optical Tweezers. Annual Review of Biochemistry, 77(1), 205-228. doi:10.1146/annurev.biochem.77.043007.090225 es_ES
dc.description.references Hormeño, S., & Arias-Gonzalez, J. R. (2006). Exploring mechanochemical processes in the cell with optical tweezers. Biology of the Cell, 98(12), 679-695. doi:10.1042/bc20060036 es_ES
dc.description.references M. Tanase , N.Biais and M.Sheetz , in Methods in Cell Biology , ed. W. Yu-Li and E. D. Dennis , Academic Press , 2007 , vol. 83, pp. 473–493 es_ES
dc.description.references Bryant, Z., Stone, M. D., Gore, J., Smith, S. B., Cozzarelli, N. R., & Bustamante, C. (2003). Structural transitions and elasticity from torque measurements on DNA. Nature, 424(6946), 338-341. doi:10.1038/nature01810 es_ES
dc.description.references Bishop, A. I., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein-Dunlop, H. (2003). Optical application and measurement of torque on microparticles of isotropic nonabsorbing material. Physical Review A, 68(3). doi:10.1103/physreva.68.033802 es_ES
dc.description.references Deufel, C., Forth, S., Simmons, C. R., Dejgosha, S., & Wang, M. D. (2007). Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nature Methods, 4(3), 223-225. doi:10.1038/nmeth1013 es_ES
dc.description.references Gutiérrez-Medina, B., Andreasson, J. O. L., Greenleaf, W. J., LaPorta, A., & Block, S. M. (2010). An Optical Apparatus for Rotation and Trapping. Single Molecule Tools, Part B:Super-Resolution, Particle Tracking, Multiparameter, and Force Based Methods, 377-404. doi:10.1016/s0076-6879(10)75015-1 es_ES
dc.description.references Parkin, S., Knöner, G., Singer, W., Nieminen, T. A., Heckenberg, N. R., & Rubinsztein‐Dunlop, H. (2007). Optical Torque on Microscopic Objects. Laser Manipulation of Cells and Tissues, 525-561. doi:10.1016/s0091-679x(06)82019-4 es_ES
dc.description.references La Porta, A., & Wang, M. D. (2004). Optical Torque Wrench: Angular Trapping, Rotation, and Torque Detection of Quartz Microparticles. Physical Review Letters, 92(19). doi:10.1103/physrevlett.92.190801 es_ES
dc.description.references Bryant, Z., Oberstrass, F. C., & Basu, A. (2012). Recent developments in single-molecule DNA mechanics. Current Opinion in Structural Biology, 22(3), 304-312. doi:10.1016/j.sbi.2012.04.007 es_ES
dc.description.references Lebel, P., Basu, A., Oberstrass, F. C., Tretter, E. M., & Bryant, Z. (2014). Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nature Methods, 11(4), 456-462. doi:10.1038/nmeth.2854 es_ES
dc.description.references Celedon, A., Nodelman, I. M., Wildt, B., Dewan, R., Searson, P., Wirtz, D., … Sun, S. X. (2009). Magnetic Tweezers Measurement of Single Molecule Torque. Nano Letters, 9(4), 1720-1725. doi:10.1021/nl900631w es_ES
dc.description.references Celedon, A., Wirtz, D., & Sun, S. (2010). Torsional Mechanics of DNA Are Regulated by Small-Molecule Intercalation. The Journal of Physical Chemistry B, 114(50), 16929-16935. doi:10.1021/jp107541q es_ES
dc.description.references Kauert, D. J., Kurth, T., Liedl, T., & Seidel, R. (2011). Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami. Nano Letters, 11(12), 5558-5563. doi:10.1021/nl203503s es_ES
dc.description.references Lipfert, J., Kerssemakers, J. W. J., Jager, T., & Dekker, N. H. (2010). Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nature Methods, 7(12), 977-980. doi:10.1038/nmeth.1520 es_ES
dc.description.references Lipfert, J., Wiggin, M., Kerssemakers, J. W. J., Pedaci, F., & Dekker, N. H. (2011). Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nature Communications, 2(1). doi:10.1038/ncomms1450 es_ES
dc.description.references Janssen, X. J. A., Lipfert, J., Jager, T., Daudey, R., Beekman, J., & Dekker, N. H. (2012). Electromagnetic Torque Tweezers: A Versatile Approach for Measurement of Single-Molecule Twist and Torque. Nano Letters, 12(7), 3634-3639. doi:10.1021/nl301330h es_ES
dc.description.references Mosconi, F., Allemand, J. F., & Croquette, V. (2011). Soft magnetic tweezers: A proof of principle. Review of Scientific Instruments, 82(3), 034302. doi:10.1063/1.3531959 es_ES
dc.description.references Arias-Gonzalez, J. R. (2013). Optical Tweezers to Study Viruses. Structure and Physics of Viruses, 273-304. doi:10.1007/978-94-007-6552-8_9 es_ES
dc.description.references Albiser, G., Harmouchi, M., & Premilat, S. (1988). Influence of a Mechanical Tension on the B-C and B-C Conformational Transitions in DNA Fibres. Journal of Biomolecular Structure and Dynamics, 6(2), 359-366. doi:10.1080/07391102.1988.10507718 es_ES
dc.description.references Fornells, M., Campos, J. L., & Subirana, J. A. (1983). Changes of conformation of DNA produced by mechanical forces. Journal of Molecular Biology, 166(2), 249-252. doi:10.1016/s0022-2836(83)80012-6 es_ES
dc.description.references Harmouchi, M., Albiser, G., & Premilat, S. (1992). Effect of a mechanical tension on the hydration of DNA in fibres. Biochemical and Biophysical Research Communications, 188(1), 78-85. doi:10.1016/0006-291x(92)92352-x es_ES
dc.description.references Schultz, J., Rupprecht, A., Song, Z., Piskur, J., Nordenskiöld, L., & Lahajnar, G. (1994). A mechanochemical study of MgDNA fibers in ethanol-water solutions. Biophysical Journal, 66(3), 810-819. doi:10.1016/s0006-3495(94)80857-4 es_ES
dc.description.references Baumann, C. G., Smith, S. B., Bloomfield, V. A., & Bustamante, C. (1997). Ionic effects on the elasticity of single DNA molecules. Proceedings of the National Academy of Sciences, 94(12), 6185-6190. doi:10.1073/pnas.94.12.6185 es_ES
dc.description.references Gore, J., Bryant, Z., Nöllmann, M., Le, M. U., Cozzarelli, N. R., & Bustamante, C. (2006). DNA overwinds when stretched. Nature, 442(7104), 836-839. doi:10.1038/nature04974 es_ES
dc.description.references Wenner, J. R., Williams, M. C., Rouzina, I., & Bloomfield, V. A. (2002). Salt Dependence of the Elasticity and Overstretching Transition of Single DNA Molecules. Biophysical Journal, 82(6), 3160-3169. doi:10.1016/s0006-3495(02)75658-0 es_ES
dc.description.references Van Mameren, J., Gross, P., Farge, G., Hooijman, P., Modesti, M., Falkenberg, M., … Peterman, E. J. G. (2009). Unraveling the structure of DNA during overstretching by using multicolor, single-molecule fluorescence imaging. Proceedings of the National Academy of Sciences, 106(43), 18231-18236. doi:10.1073/pnas.0904322106 es_ES
dc.description.references Williams, M. C., Wenner, J. R., Rouzina, I., & Bloomfield, V. A. (2001). Entropy and Heat Capacity of DNA Melting from Temperature Dependence of Single Molecule Stretching. Biophysical Journal, 80(4), 1932-1939. doi:10.1016/s0006-3495(01)76163-2 es_ES
dc.description.references Bosaeus, N., El-Sagheer, A. H., Brown, T., Smith, S. B., Åkerman, B., Bustamante, C., & Nordén, B. (2012). Tension induces a base-paired overstretched DNA conformation. Proceedings of the National Academy of Sciences, 109(38), 15179-15184. doi:10.1073/pnas.1213172109 es_ES
dc.description.references Fu, H., Chen, H., Marko, J. F., & Yan, J. (2010). Two distinct overstretched DNA states. Nucleic Acids Research, 38(16), 5594-5600. doi:10.1093/nar/gkq309 es_ES
dc.description.references Fu, H., Chen, H., Zhang, X., Qu, Y., Marko, J. F., & Yan, J. (2010). Transition dynamics and selection of the distinct S-DNA and strand unpeeling modes of double helix overstretching. Nucleic Acids Research, 39(8), 3473-3481. doi:10.1093/nar/gkq1278 es_ES
dc.description.references King, G. A., Gross, P., Bockelmann, U., Modesti, M., Wuite, G. J. L., & Peterman, E. J. G. (2013). Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching using fluorescence microscopy. Proceedings of the National Academy of Sciences, 110(10), 3859-3864. doi:10.1073/pnas.1213676110 es_ES
dc.description.references Paik, D. H., & Perkins, T. T. (2011). Overstretching DNA at 65 pN Does Not Require Peeling from Free Ends or Nicks. Journal of the American Chemical Society, 133(10), 3219-3221. doi:10.1021/ja108952v es_ES
dc.description.references Whitelam, S., Pronk, S., & Geissler, P. L. (2008). There and (Slowly) Back Again: Entropy-Driven Hysteresis in a Model of DNA Overstretching. Biophysical Journal, 94(7), 2452-2469. doi:10.1529/biophysj.107.117036 es_ES
dc.description.references Williams, M. C., Rouzina, I., & McCauley, M. J. (2009). Peeling back the mystery of DNA overstretching. Proceedings of the National Academy of Sciences, 106(43), 18047-18048. doi:10.1073/pnas.0910269106 es_ES
dc.description.references Zhang, X., Chen, H., Fu, H., Doyle, P. S., & Yan, J. (2012). Two distinct overstretched DNA structures revealed by single-molecule thermodynamics measurements. Proceedings of the National Academy of Sciences, 109(21), 8103-8108. doi:10.1073/pnas.1109824109 es_ES
dc.description.references Zhang, X., Chen, H., Le, S., Rouzina, I., Doyle, P. S., & Yan, J. (2013). Revealing the competition between peeled ssDNA, melting bubbles, and S-DNA during DNA overstretching by single-molecule calorimetry. Proceedings of the National Academy of Sciences, 110(10), 3865-3870. doi:10.1073/pnas.1213740110 es_ES
dc.description.references Fang, Y., Hoh, J. H., & Spisz, T. S. (1999). Ethanol-induced structural transitions of DNA on mica. Nucleic Acids Research, 27(8), 1943-1949. doi:10.1093/nar/27.8.1943 es_ES
dc.description.references Bonin, M. (2002). Analysis of RNA flexibility by scanning force spectroscopy. Nucleic Acids Research, 30(16), 81e-81. doi:10.1093/nar/gnf080 es_ES
dc.description.references Li, L., Pabit, S. A., Meisburger, S. P., & Pollack, L. (2011). Double-Stranded RNA Resists Condensation. Physical Review Letters, 106(10). doi:10.1103/physrevlett.106.108101 es_ES
dc.description.references Baumann, C. G., Bloomfield, V. A., Smith, S. B., Bustamante, C., Wang, M. D., & Block, S. M. (2000). Stretching of Single Collapsed DNA Molecules. Biophysical Journal, 78(4), 1965-1978. doi:10.1016/s0006-3495(00)76744-0 es_ES
dc.description.references Murayama, Y., Sakamaki, Y., & Sano, M. (2003). Elastic Response of Single DNA Molecules Exhibits a Reentrant Collapsing Transition. Physical Review Letters, 90(1). doi:10.1103/physrevlett.90.018102 es_ES
dc.description.references Noy, A., Pérez, A., Laughton, C. A., & Orozco, M. (2007). Theoretical study of large conformational transitions in DNA: the B↔A conformational change in water and ethanol/water. Nucleic Acids Research, 35(10), 3330-3338. doi:10.1093/nar/gkl1135 es_ES
dc.description.references Li, W., Wang, P.-Y., Yan, J., & Li, M. (2012). Impact of DNA Twist Accumulation on Progressive Helical Wrapping of Torsionally Constrained DNA. Physical Review Letters, 109(21). doi:10.1103/physrevlett.109.218102 es_ES
dc.description.references Shao, Q., Goyal, S., Finzi, L., & Dunlap, D. (2012). Physiological Levels of Salt and Polyamines Favor Writhe and Limit Twist in DNA. Macromolecules, 45(7), 3188-3196. doi:10.1021/ma300211t es_ES
dc.description.references Strick, T. R., Allemand, J.-F., Bensimon, D., Bensimon, A., & Croquette, V. (1996). The Elasticity of a Single Supercoiled DNA Molecule. Science, 271(5257), 1835-1837. doi:10.1126/science.271.5257.1835 es_ES
dc.description.references Strick, T. R., Allemand, J.-F., Bensimon, D., & Croquette, V. (1998). Behavior of Supercoiled DNA. Biophysical Journal, 74(4), 2016-2028. doi:10.1016/s0006-3495(98)77908-1 es_ES
dc.description.references Smith, S., Finzi, L., & Bustamante, C. (1992). Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science, 258(5085), 1122-1126. doi:10.1126/science.1439819 es_ES
dc.description.references Léger, J. F., Romano, G., Sarkar, A., Robert, J., Bourdieu, L., Chatenay, D., & Marko, J. F. (1999). Structural Transitions of a Twisted and Stretched DNA Molecule. Physical Review Letters, 83(5), 1066-1069. doi:10.1103/physrevlett.83.1066 es_ES
dc.description.references Strick, T. R., Croquette, V., & Bensimon, D. (1998). Homologous pairing in stretched supercoiled DNA. Proceedings of the National Academy of Sciences, 95(18), 10579-10583. doi:10.1073/pnas.95.18.10579 es_ES
dc.description.references Oberstrass, F. C., Fernandes, L. E., Lebel, P., & Bryant, Z. (2013). Torque Spectroscopy of DNA: Base-Pair Stability, Boundary Effects, Backbending, and Breathing Dynamics. Physical Review Letters, 110(17). doi:10.1103/physrevlett.110.178103 es_ES
dc.description.references Sheinin, M. Y., Forth, S., Marko, J. F., & Wang, M. D. (2011). Underwound DNA under Tension: Structure, Elasticity, and Sequence-Dependent Behaviors. Physical Review Letters, 107(10). doi:10.1103/physrevlett.107.108102 es_ES
dc.description.references Sarkar, A., Léger, J.-F., Chatenay, D., & Marko, J. F. (2001). Structural transitions in DNA driven by external force and torque. Physical Review E, 63(5). doi:10.1103/physreve.63.051903 es_ES
dc.description.references Marko, J. F., & Neukirch, S. (2012). Competition between curls and plectonemes near the buckling transition of stretched supercoiled DNA. Physical Review E, 85(1). doi:10.1103/physreve.85.011908 es_ES
dc.description.references Kamien, R. D., Lubensky, T. C., Nelson, P., & O’Hern, C. S. (1997). Direct determination of DNA twist-stretch coupling. Europhysics Letters (EPL), 38(3), 237-242. doi:10.1209/epl/i1997-00231-y es_ES
dc.description.references Marko, J. F. (1997). Stretching must twist DNA. Europhysics Letters (EPL), 38(3), 183-188. doi:10.1209/epl/i1997-00223-5 es_ES
dc.description.references Marko, J. F. (1998). DNA under high tension: Overstretching, undertwisting, and relaxation dynamics. Physical Review E, 57(2), 2134-2149. doi:10.1103/physreve.57.2134 es_ES
dc.description.references Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D., & Croquette, V. (2006). Wringing Out DNA. Physical Review Letters, 96(17). doi:10.1103/physrevlett.96.178102 es_ES
dc.description.references Forth, S., Deufel, C., Sheinin, M. Y., Daniels, B., Sethna, J. P., & Wang, M. D. (2008). Abrupt Buckling Transition Observed during the Plectoneme Formation of Individual DNA Molecules. Physical Review Letters, 100(14). doi:10.1103/physrevlett.100.148301 es_ES
dc.description.references Lipfert, J., Klijnhout, S., & Dekker, N. H. (2010). Torsional sensing of small-molecule binding using magnetic tweezers. Nucleic Acids Research, 38(20), 7122-7132. doi:10.1093/nar/gkq598 es_ES
dc.description.references Wereszczynski, J., & Andricioaei, I. (2006). On structural transitions, thermodynamic equilibrium, and the phase diagram of DNA and RNA duplexes under torque and tension. Proceedings of the National Academy of Sciences, 103(44), 16200-16205. doi:10.1073/pnas.0603850103 es_ES
dc.description.references Hagerman, P. J. (1988). Flexibility of DNA. Annual Review of Biophysics and Biophysical Chemistry, 17(1), 265-286. doi:10.1146/annurev.bb.17.060188.001405 es_ES
dc.description.references Hagerman, P. J. (1997). FLEXIBILITY OF RNA. Annual Review of Biophysics and Biomolecular Structure, 26(1), 139-156. doi:10.1146/annurev.biophys.26.1.139 es_ES
dc.description.references Wiggins, P. A., van der Heijden, T., Moreno-Herrero, F., Spakowitz, A., Phillips, R., Widom, J., … Nelson, P. C. (2006). High flexibility of DNA on short length scales probed by atomic force microscopy. Nature Nanotechnology, 1(2), 137-141. doi:10.1038/nnano.2006.63 es_ES
dc.description.references Marko, J. F., & Siggia, E. D. (1995). Stretching DNA. Macromolecules, 28(26), 8759-8770. doi:10.1021/ma00130a008 es_ES
dc.description.references Odijk, T. (1995). Stiff Chains and Filaments under Tension. Macromolecules, 28(20), 7016-7018. doi:10.1021/ma00124a044 es_ES
dc.description.references Wang, M. D., Yin, H., Landick, R., Gelles, J., & Block, S. M. (1997). Stretching DNA with optical tweezers. Biophysical Journal, 72(3), 1335-1346. doi:10.1016/s0006-3495(97)78780-0 es_ES
dc.description.references Bustamante, C., Smith, S. B., Liphardt, J., & Smith, D. (2000). Single-molecule studies of DNA mechanics. Current Opinion in Structural Biology, 10(3), 279-285. doi:10.1016/s0959-440x(00)00085-3 es_ES
dc.description.references Selvin, P., Cook, D., Pon, N., Bauer, W., Klein, M., & Hearst, J. (1992). Torsional rigidity of positively and negatively supercoiled DNA. Science, 255(5040), 82-85. doi:10.1126/science.1553534 es_ES
dc.description.references Moroz, J. D., & Nelson, P. (1998). Entropic Elasticity of Twist-Storing Polymers. Macromolecules, 31(18), 6333-6347. doi:10.1021/ma971804a es_ES
dc.description.references Strick, T. R., Bensimon, D., & Croquette, V. (1999). Genetica, 106(1/2), 57-62. doi:10.1023/a:1003772626927 es_ES
dc.description.references Vologodskii, A. V., & Marko, J. F. (1997). Extension of torsionally stressed DNA by external force. Biophysical Journal, 73(1), 123-132. doi:10.1016/s0006-3495(97)78053-6 es_ES
dc.description.references Mosconi, F., Allemand, J. F., Bensimon, D., & Croquette, V. (2009). Measurement of the Torque on a Single Stretched and Twisted DNA Using Magnetic Tweezers. Physical Review Letters, 102(7). doi:10.1103/physrevlett.102.078301 es_ES
dc.description.references Oroszi, L., Galajda, P., Kirei, H., Bottka, S., & Ormos, P. (2006). Direct Measurement of Torque in an Optical Trap and Its Application to Double-Strand DNA. Physical Review Letters, 97(5). doi:10.1103/physrevlett.97.058301 es_ES
dc.description.references Gross, P., Laurens, N., Oddershede, L. B., Bockelmann, U., Peterman, E. J. G., & Wuite, G. J. L. (2011). Quantifying how DNA stretches, melts and changes twist under tension. Nature Physics, 7(9), 731-736. doi:10.1038/nphys2002 es_ES
dc.description.references Sheinin, M. Y., & Wang, M. D. (2009). Twist–stretch coupling and phase transition during DNA supercoiling. Physical Chemistry Chemical Physics, 11(24), 4800. doi:10.1039/b901646e es_ES
dc.description.references Lavelle, C. (2014). Pack, unpack, bend, twist, pull, push: the physical side of gene expression. Current Opinion in Genetics & Development, 25, 74-84. doi:10.1016/j.gde.2014.01.001 es_ES
dc.description.references Yin, H., Wang, M. D., Svoboda, K., Landick, R., Block, S. M., & Gelles, J. (1995). Transcription Against an Applied Force. Science, 270(5242), 1653-1657. doi:10.1126/science.270.5242.1653 es_ES
dc.description.references Bumcrot, D., Manoharan, M., Koteliansky, V., & Sah, D. W. Y. (2006). RNAi therapeutics: a potential new class of pharmaceutical drugs. Nature Chemical Biology, 2(12), 711-719. doi:10.1038/nchembio839 es_ES
dc.description.references Seidel, R., & Dekker, C. (2007). Single-molecule studies of nucleic acid motors. Current Opinion in Structural Biology, 17(1), 80-86. doi:10.1016/j.sbi.2006.12.003 es_ES
dc.description.references Tinoco, I., Chen, G., & Qu, X. (2010). RNA Reactions One Molecule at a Time. Cold Spring Harbor Perspectives in Biology, 2(11), a003624-a003624. doi:10.1101/cshperspect.a003624 es_ES
dc.description.references Liphardt, J. (2001). Reversible Unfolding of Single RNA Molecules by Mechanical Force. Science, 292(5517), 733-737. doi:10.1126/science.1058498 es_ES
dc.description.references Garavís, M., Bocanegra, R., Herrero-Galán, E., González, C., Villasante, A., & Arias-Gonzalez, J. R. (2013). Mechanical unfolding of long human telomeric RNA (TERRA). Chemical Communications, 49(57), 6397. doi:10.1039/c3cc42981d es_ES
dc.description.references Yu, Z., & Mao, H. (2013). Non-B DNA Structures Show Diverse Conformations and Complex Transition Kinetics Comparable to RNA or Proteins-A Perspective from Mechanical Unfolding and Refolding Experiments. The Chemical Record, 13(1), 102-116. doi:10.1002/tcr.201200021 es_ES
dc.description.references Marko, J. F. (2007). Torque and dynamics of linking number relaxation in stretched supercoiled DNA. Physical Review E, 76(2). doi:10.1103/physreve.76.021926 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem