- -

Processing and characterization of alpha-elastin electrospun membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Processing and characterization of alpha-elastin electrospun membranes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Araujo, J. es_ES
dc.contributor.author Padrao, J. es_ES
dc.contributor.author Silva, J. P. es_ES
dc.contributor.author Dourado, F. es_ES
dc.contributor.author Correia, D. M. es_ES
dc.contributor.author Botelho, G. es_ES
dc.contributor.author Gómez Ribelles, José Luís es_ES
dc.contributor.author Lanceros-Mendez, S. es_ES
dc.contributor.author Sencadas, V. es_ES
dc.date.accessioned 2020-10-22T03:32:30Z
dc.date.available 2020-10-22T03:32:30Z
dc.date.issued 2014-06 es_ES
dc.identifier.issn 0947-8396 es_ES
dc.identifier.uri http://hdl.handle.net/10251/152812
dc.description.abstract [EN] Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 ¿m width were achieved. After cross-linking with glutaraldehyde, ¿-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ~80 °C. Moreover, ¿-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats. es_ES
dc.description.sponsorship This work is funded by FEDER funds through the "Programa Operacional Factores de Competitividade-COMPETE" and by national funds arranged by FCT-Fundacao para a Ciencia e a Tecnologia, project references NANO/NMed-SD/0156/2007, PTDC/CTM-NAN/112574/2009, and PEST-C/FIS/UI607/2011. The authors also thank funding from "Matepro-Optimizing Materials and Processes", ref. "NORTE-07-0124-FEDER-000037", cofunded by the "Programa Operacional Regional do Norte" (ON.2-O Novo Norte), under the "Quadro de Referencia Estrategico Nacional" (QREN), through the "Fundo Europeu de Desenvolvimento Regional" (FEDER). The authors also thank support from the COST Action MP1003, 2010 'European Scientific Network for Artificial Muscles'. VS, JP, JS, and DMC thank the FCT for the SFRH/BD/48708/2008, SFRH/BD/64901/2009, SFRH/BPD/64958/2009 and SFRH/BPD/63148/2009, and SFRH/BD/82411/2011 grants, respectively. JLGR acknowledges the support of the Spanish Ministry of Science and Innovation through project No. MAT2010-21611-C03-01 (including the FEDER financial support). CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Applied Physics A es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Processing and characterization of alpha-elastin electrospun membranes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00339-013-7984-9 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1003/EU/European Scientific Network for Artificial Muscles (ESNAM)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/112574/PT/PROTSENSOR - A novel pressure sensor network system for static and dynamic measurement. Application to the limb/prosthesis pressure mapping./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F48708%2F2008/PT/MATERIAIS INTELIGENTES ELECTROACTIVOS PARA APLICAÇÕES TEXTEIS E BIOMÉDICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//NORTE-07-0124-FEDER-000037/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F64901%2F2009/PT/DESENVOLVIMENTO E CARACTERIZAÇÃO DE NOVOS FILMES EDÍVEIS COM PROPRIEDADES ANTI-MICROBIANAS PARA EMBALAGENS ALIMENTARES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PEst-C%2FFIS%2FUI607%2F2011/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBD%2F82411%2F2011/PT/SCAFFOLDS TRIDIMENSIONAIS BASEADOS EM NNANOFIBRAS ELECTROACTIVAS BIODEGRADÁVEIS PARA APLICAÇÃO EM ENGENHARIA DE TECIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-21611-C03-01/ES/MATERIALES BIOESTABLES Y BIOREABSORBIBLES A LARGO PLAZO COMO SOPORTES MACROPOROSOS PARA LA REGENERACION DEL CARTILAGO ARTICULAR/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F63148%2F2009/PT/ELECTROACTIVE MATERIALS BASED POROUS MEMBRANES AND SCAFFOLDS FOR BIOMEDICAL APPLICATIONS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F64958%2F2009/PT/ENGINEERING TISSUES WITH BACTERIAL CELLULOSE/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/FEDER//FEDER/NORTE-07-0124-FEDER-000037/2013/EU/Matepro Optimizing Materials and Processes/
dc.relation.projectID info:eu-repo/grantAgreement/FCT/5876-PPCDTI/109368/PT/“Smart joint implants using bionanocomposites-(SIMBIO)”/
dc.relation.projectID info:eu-repo/grantAgreement/FCT//PEST-C/FIS%2FUI607%2F2011/PT/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Araujo, J.; Padrao, J.; Silva, JP.; Dourado, F.; Correia, DM.; Botelho, G.; Gómez Ribelles, JL.... (2014). Processing and characterization of alpha-elastin electrospun membranes. Applied Physics A. 115(4):1291-1298. https://doi.org/10.1007/s00339-013-7984-9 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00339-013-7984-9 es_ES
dc.description.upvformatpinicio 1291 es_ES
dc.description.upvformatpfin 1298 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 4 es_ES
dc.relation.pasarela S\284990 es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Fundação para a Ciência e a Tecnologia, Portugal es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references J.E. Wagenseil, R.P. Mecham, Birth defects research, Part C: Embryo today. Reviews 81, 229 (2007). doi: 10.1002/bdrc.20111 es_ES
dc.description.references F.W. Keeley, C.M. Bellingham, K.A. Woodhouse, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 357, 185 (2002). doi: 10.1098/rstb.2001.1027 es_ES
dc.description.references G.W. Chalmers, J.M. Gosline, M.A. Lillie, J. Exp. Biol. 202, 301 (1999) es_ES
dc.description.references B. Li, V. Daggett, J. Muscle Res. Cell Motil. 23, 561 (2002). doi: 10.1023/a:1023474909980 es_ES
dc.description.references J. Uitto, J. Invest. Dermatol. 72, 1 (1979) es_ES
dc.description.references P. Brown-Augsburger, T. Broekelmann, J. Rosenbloom, R.P. Mecham, Biochem. J. 318, 149 (1996) es_ES
dc.description.references A.S. Tatham, P.R. Shewry, Trends Biochem. Sci. 25, 567 (2000). doi: 10.1016/S0968-0004(00)01670-4 es_ES
dc.description.references D.W. Urry, What Sustains Life? Consilient Mechanisms for Protein-Based Machines and Materials (Springer, Singapore, 2006) es_ES
dc.description.references B.A. Cox, B.C. Starcher, D.W. Urry, J. Biol. Chem. 249, 997 (1974) es_ES
dc.description.references J.C. Rodríguez-Cabello, M. Alonso, M.I. Díez, M.I. Caballero, M.M. Herguedas, Macromol. Chem. Phys. 200, 1831 (1999). doi: 10.1002/(sici)1521-3935(19990801)200:8<1831::aid-macp1831>3.0.co;2-v es_ES
dc.description.references R. Machado, A.J. Ribeiro, J. Padrão et al., J. Nanopart. Res. 6, 133 (2009). doi: 10.4028/www.scientific.net/JNanoR.6.133 es_ES
dc.description.references Z. Indik, H. Yeh, N. Ornstein-Goldstein et al., Proc. Natl. Acad. Sci. 84, 5680 (1987) es_ES
dc.description.references J.F. Almine, D.V. Bax, S.M. Mithieux et al., Chem. Soc. Rev. 39, 3371 (2010) es_ES
dc.description.references L. Nivison-Smith, J. Rnjak, A.S. Weiss, Acta Biomater. 6, 354 (2010). doi: 10.1016/j.actbio.2009.08.011 es_ES
dc.description.references W.E. Teo, S. Ramakrishna, Nanotechnology 17, R89 (2006) es_ES
dc.description.references M.S. El-Kurdi, Y. Hong, J.J. Stankus, L. Soletti, W.R. Wagner, D.A. Vorp, Biomaterials 29, 3213 (2008). doi: 10.1016/j.biomaterials.2008.04.009 es_ES
dc.description.references J. Stitzel, J. Liu, S.J. Lee et al., Biomaterials 27, 1088 (2006). doi: 10.1016/j.biomaterials.2005.07.048 es_ES
dc.description.references L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs et al., Biomaterials 27, 724 (2006). doi: 10.1016/j.biomaterials.2005.06.024 es_ES
dc.description.references R. Tarnawski, J. Kasperczyk, M. Drózdż, Ups. J. Med. Sci. 98, 53 (1993). doi: 10.3109/03009739309179303 es_ES
dc.description.references B. Vrhovski, A.S. Weiss, Eur. J. Biochem. 258, 1 (1998). doi: 10.1046/j.1432-1327.1998.2580001.x es_ES
dc.description.references S.M. Mithieux, J.E.J. Rasko, A.S. Weiss, Biomaterials 25, 4921 (2004). doi: 10.1016/j.biomaterials.2004.01.055 es_ES
dc.description.references M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, P.I. Lelkes, Biomaterials 26, 5999 (2005). doi: 10.1016/j.biomaterials.2005.03.030 es_ES
dc.description.references L. Gotte, P. Stern, D.F. Elsden, S.M. Partridge, Biochem. J. 87, 344 (1963) es_ES
dc.description.references S.M. Partridge, H.F. Davis, Biochem. J. 61, 21 (1955) es_ES
dc.description.references M.D. Abramoff, P.J. Magalhães, S.J. Ram, Biophoton. Int. 11, 36 (2004) es_ES
dc.description.references S. Ramakrishna, K. Fujihara, W.E. Teo, T.C. Lim, Z. Ma, Introduction to Electrospinning and Nanofibers (World Scientific, Singapore, 2005) es_ES
dc.description.references C. Ribeiro, V. Sencadas, J.L.G. Ribelles, S. Lanceros-Méndez, Soft Mater. 8, 274 (2010) es_ES
dc.description.references V. Sencadas, D.M. Correia, C. Ribeiro et al., Polym. Test. 31, 1062 (2012). doi: 10.1016/j.polymertesting.2012.07.010 es_ES
dc.description.references V. Sencadas, C. Ribeiro, J. Nunes-Pereira, V. Correia, S. Lanceros-Méndez, Appl. Phys. A, Mater. Sci. Process. 109, 685 (2012). doi: 10.1007/s00339-012-7101-5 es_ES
dc.description.references R. Clarisse, S. Vitor, C. Carlos Miguel, R. José Luís Gómez, L.-M. Senentxu, Sci. Technol. Adv. Mater. 12, 015001 (2011) es_ES
dc.description.references A. Arinstein, E. Zussman, Phys. Rev. E 76, 056303 (2007) es_ES
dc.description.references S. Koombhongse, W. Liu, D.H. Reneker, J. Polym. Sci., Part B, Polym. Phys. 39, 2598 (2001). doi: 10.1002/polb.10015 es_ES
dc.description.references X.-H. Qin, Y.-Q. Wan, J.-H. He, J. Zhang, J.-Y. Yu, S.-Y. Wang, Polymer 45, 6409 (2004). doi: 10.1016/j.polymer.2004.06.031 es_ES
dc.description.references S. Zhao, X. Wu, L. Wang, Y. Huang, J. Appl. Polym. Sci. 91, 242 (2004). doi: 10.1002/app.13196 es_ES
dc.description.references K. Gao, X. Hu, C. Dai, T. Yi, Mater. Sci. Eng. B 131, 100 (2006). doi: 10.1016/j.mseb.2006.03.035 es_ES
dc.description.references M.M. Demir, I. Yilgor, E. Yilgor, B. Erman, Polymer 43, 3303 (2002). doi: 10.1016/s0032-3861(02)00136-2 es_ES
dc.description.references S. Megelski, J.S. Stephens, D.B. Chase, J.F. Rabolt, Macromolecules 35, 8456 (2002). doi: 10.1021/ma020444a es_ES
dc.description.references V. Sencadas, D.M. Correia, A. Areias et al., Carbohydr. Polym. (2011). doi: 10.1016/j.carbpol.2011.09.017 es_ES
dc.description.references R. Clarisse et al., Sci. Technol. Adv. Mater. 12, 015001 (2011) es_ES
dc.description.references X.M. Mo, C.Y. Xu, M. Kotaki, S. Ramakrishna, Biomaterials 25, 1883 (2004). doi: 10.1016/j.biomaterials.2003.08.042 es_ES
dc.description.references P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, 1953) es_ES
dc.description.references C.M. Ofner III, W.A. Bubnis, Pharm. Res. 13, 1821 (1996). doi: 10.1023/a:1016029023910 es_ES
dc.description.references G. Ceccorulli, M. Scandola, G. Pezzin, Biopolymers 16, 1505 (1977). doi: 10.1002/bip.1977.360160710 es_ES
dc.description.references V. Samouillan, F. Delaunay, J. Dandurand et al., J. Funct. Biomater. 2, 230 (2011) es_ES
dc.description.references L. Debelle, A.J.P. Alix, M.-P. Jacob et al., J. Biol. Chem. 270, 26099 (1995). doi: 10.1074/jbc.270.44.26099 es_ES
dc.description.references W.F. Daamen, J.H. Veerkamp, J.C.M. van Hest, T.H. van Kuppevelt, Biomaterials 28, 4378 (2007). doi: 10.1016/j.biomaterials.2007.06.025 es_ES
dc.description.references M.-C. Popescu, C. Vasile, O. Craciunescu, Biopolymers 93, 1072 (2010). doi: 10.1002/bip.21524 es_ES
dc.description.references B.B. Aaron, J.M. Gosline, Biopolymers 20, 1247 (1981). doi: 10.1002/bip.1981.360200611 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem