- -

Building zeolites from precrystallized units: nanoscale architecture

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Building zeolites from precrystallized units: nanoscale architecture

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Li, Chengeng es_ES
dc.contributor.author Moliner Marin, Manuel es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-10-29T04:32:12Z
dc.date.available 2020-10-29T04:32:12Z
dc.date.issued 2018-11-19 es_ES
dc.identifier.issn 1433-7851 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153467
dc.description This is the peer reviewed version of the following article: Angew. Chem. Int. Ed. 2018, 57, 15330 15353, which has been published in final form at https://doi.org/10.1002/anie.201711422. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Since the early reports by Barrer in the 1940s on converting natural minerals into synthetic zeolites, the use of precrystallized zeolites as crucial inorganic directing agents to synthesize other crystalline zeolites with improved physicochemical properties has become a very important research field, allowing the design, particularly in recent years, of new industrial catalysts. This Review highlights how the presence of some crystalline fragments in the synthesis media, such as small secondary building units (SBUs) or layered substructures, not only favors the crystallization of other zeolites with similar SBUs or layers, but also permits control over important parameters affecting their catalytic activity (chemical composition, crystal size, or porosity, etc.). Recent advances in the preparation of 3D and 2D zeolites through seeding and zeolite-to-zeolite transformation processes will be discussed extensively in this Review, including their preparation in the presence or absence of organic structure-directing agents (OSDAs). The aim is to introduce general guidelines for more efficient approaches for target zeolites. es_ES
dc.description.sponsorship This work has been supported by the Spanish Government (MINECO through "Severo Ochoa" (SEV-2016-0683) and MAT2015-71261-R), by the European Union through ERC-AdG-2014-671093 (SynCatMatch), and by the Fundacion Ramon Areces (through the "Life and Materials Science" program). es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Angewandte Chemie International Edition es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Crystallization es_ES
dc.subject Interzeolite transformation es_ES
dc.subject OSDAs es_ES
dc.subject Zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Building zeolites from precrystallized units: nanoscale architecture es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/anie.201711422 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71261-R/ES/DISEÑO RACIONAL DE MATERIALES ZEOLITICOS CON CENTROS METALICOS PARA SU APLICACION EN PROCESOS QUIMICOS SOSTENIBLES, MEDIOAMBIENTALES Y ENERGIAS RENOVABLES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Li, C.; Moliner Marin, M.; Corma Canós, A. (2018). Building zeolites from precrystallized units: nanoscale architecture. Angewandte Chemie International Edition. 57(47):15330-15353. https://doi.org/10.1002/anie.201711422 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/anie.201711422 es_ES
dc.description.upvformatpinicio 15330 es_ES
dc.description.upvformatpfin 15353 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 57 es_ES
dc.description.issue 47 es_ES
dc.identifier.pmid 29364578 es_ES
dc.relation.pasarela S\383409 es_ES
dc.contributor.funder Fundación Ramón Areces es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.description.references Cundy, C. S., & Cox, P. A. (2005). The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, 82(1-2), 1-78. doi:10.1016/j.micromeso.2005.02.016 es_ES
dc.description.references Martínez, C., & Corma, A. (2011). Inorganic molecular sieves: Preparation, modification and industrial application in catalytic processes. Coordination Chemistry Reviews, 255(13-14), 1558-1580. doi:10.1016/j.ccr.2011.03.014 es_ES
dc.description.references Čejka, J., Centi, G., Perez-Pariente, J., & Roth, W. J. (2012). Zeolite-based materials for novel catalytic applications: Opportunities, perspectives and open problems. Catalysis Today, 179(1), 2-15. doi:10.1016/j.cattod.2011.10.006 es_ES
dc.description.references http://www.iza-structure.org/databases/. es_ES
dc.description.references Corma, A., & Davis, M. E. (2004). Issues in the Synthesis of Crystalline Molecular Sieves: Towards the Crystallization of Low Framework-Density Structures. ChemPhysChem, 5(3), 304-313. doi:10.1002/cphc.200300997 es_ES
dc.description.references Kerr, G. T. (1966). Chemistry of Crystalline Aluminosilicates. I. Factors Affecting the Formation of Zeolite A. The Journal of Physical Chemistry, 70(4), 1047-1050. doi:10.1021/j100876a015 es_ES
dc.description.references Derouane, E. G., Determmerie, S., Gabelica, Z., & Blom, N. (1981). Synthesis and characterization of ZSM-5 type zeolites I. physico-chemical properties of precursors and intermediates. Applied Catalysis, 1(3-4), 201-224. doi:10.1016/0166-9834(81)80007-3 es_ES
dc.description.references Chang, C. D., & Bell, A. T. (1991). Studies on the mechanism of ZSM-5 formation. Catalysis Letters, 8(5-6), 305-316. doi:10.1007/bf00764192 es_ES
dc.description.references Burkett, S. L., & Davis, M. E. (1994). Mechanism of Structure Direction in the Synthesis of Si-ZSM-5: An Investigation by Intermolecular 1H-29Si CP MAS NMR. The Journal of Physical Chemistry, 98(17), 4647-4653. doi:10.1021/j100068a027 es_ES
dc.description.references Li, J., Corma, A., & Yu, J. (2015). Synthesis of new zeolite structures. Chemical Society Reviews, 44(20), 7112-7127. doi:10.1039/c5cs00023h es_ES
dc.description.references Davis, M. E. (2013). Zeolites from a Materials Chemistry Perspective. Chemistry of Materials, 26(1), 239-245. doi:10.1021/cm401914u es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2015). Multipore Zeolites: Synthesis and Catalytic Applications. Angewandte Chemie International Edition, 54(12), 3560-3579. doi:10.1002/anie.201406344 es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2015). Multiporige Zeolithe: Synthese und Anwendungen bei der Katalyse. Angewandte Chemie, 127(12), 3630-3649. doi:10.1002/ange.201406344 es_ES
dc.description.references Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121 es_ES
dc.description.references Barrer, R. M., & Denny, P. J. (1961). 201. Hydrothermal chemistry of the silicates. Part IX. Nitrogenous aluminosilicates. Journal of the Chemical Society (Resumed), 971. doi:10.1039/jr9610000971 es_ES
dc.description.references Moliner, M., Rey, F., & Corma, A. (2013). Towards the Rational Design of Efficient Organic Structure-Directing Agents for Zeolite Synthesis. Angewandte Chemie International Edition, 52(52), 13880-13889. doi:10.1002/anie.201304713 es_ES
dc.description.references Moliner, M., Rey, F., & Corma, A. (2013). Rationales Design von effizienten organischen strukturdirigierenden Reagentien für die Zeolithsynthese. Angewandte Chemie, 125(52), 14124-14134. doi:10.1002/ange.201304713 es_ES
dc.description.references Burton, A. W., & Zones, S. I. (2007). Organic Molecules in Zeolite Synthesis: Their Preparation and Structure-Directing Effects. Introduction to Zeolite Science and Practice, 137-179. doi:10.1016/s0167-2991(07)80793-2 es_ES
dc.description.references Dorset, D. L., Kennedy, G. J., Strohmaier, K. G., Diaz-Cabañas, M. J., Rey, F., & Corma, A. (2006). P-Derived Organic Cations as Structure-Directing Agents:  Synthesis of a High-Silica Zeolite (ITQ-27) with a Two-Dimensional 12-Ring Channel System. Journal of the American Chemical Society, 128(27), 8862-8867. doi:10.1021/ja061206o es_ES
dc.description.references Simancas, R., Dari, D., Velamazan, N., Navarro, M. T., Cantin, A., Jorda, J. L., … Rey, F. (2010). Modular Organic Structure-Directing Agents for the Synthesis of Zeolites. Science, 330(6008), 1219-1222. doi:10.1126/science.1196240 es_ES
dc.description.references Blasco, T., Corma, A., Díaz-Cabañas, M. J., Rey, F., Vidal-Moya, J. A., & Zicovich-Wilson, C. M. (2002). Preferential Location of Ge in the Double Four-Membered Ring Units of ITQ-7 Zeolite. The Journal of Physical Chemistry B, 106(10), 2634-2642. doi:10.1021/jp013302b es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Rey, F., Nicolopoulus, S., & Boulahya, K. (2004). ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications. Chem. Commun., (12), 1356-1357. doi:10.1039/b406572g es_ES
dc.description.references Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Martínez, C., & Moliner, M. (2006). High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 443(7113), 842-845. doi:10.1038/nature05238 es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Extra-Large-Pore Zeolites: Bridging the Gap between Micro and Mesoporous Structures. Angewandte Chemie International Edition, 49(18), 3120-3145. doi:10.1002/anie.200904016 es_ES
dc.description.references Jiang, J., Yu, J., & Corma, A. (2010). Zeolithe mit sehr großen Poren als Bindeglied zwischen mikro- und mesoporösen Strukturen. Angewandte Chemie, 122(18), 3186-3212. doi:10.1002/ange.200904016 es_ES
dc.description.references Sano, T., Itakura, M., & Sadakane, M. (2013). High Potential of Interzeolite Conversion Method for Zeolite Synthesis. Journal of the Japan Petroleum Institute, 56(4), 183-197. doi:10.1627/jpi.56.183 es_ES
dc.description.references Goel, S., Zones, S. I., & Iglesia, E. (2015). Synthesis of Zeolites via Interzeolite Transformations without Organic Structure-Directing Agents. Chemistry of Materials, 27(6), 2056-2066. doi:10.1021/cm504510f es_ES
dc.description.references Martín, N., Moliner, M., & Corma, A. (2015). High yield synthesis of high-silica chabazite by combining the role of zeolite precursors and tetraethylammonium: SCR of NOx. Chemical Communications, 51(49), 9965-9968. doi:10.1039/c5cc02670a es_ES
dc.description.references Sonoda, T., Maruo, T., Yamasaki, Y., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2015). Synthesis of high-silica AEI zeolites with enhanced thermal stability by hydrothermal conversion of FAU zeolites, and their activity in the selective catalytic reduction of NOx with NH3. Journal of Materials Chemistry A, 3(2), 857-865. doi:10.1039/c4ta05621c es_ES
dc.description.references D.Xie S. I.Zones C. M.Lew T. M.Davis WO2016/003504 2016. es_ES
dc.description.references Jon, H., Ikawa, N., Oumi, Y., & Sano, T. (2008). An Insight into the Process Involved in Hydrothermal Conversion of FAU to *BEA Zeolite. Chemistry of Materials, 20(12), 4135-4141. doi:10.1021/cm703676y es_ES
dc.description.references Goto, I., Itakura, M., Shibata, S., Honda, K., Ide, Y., Sadakane, M., & Sano, T. (2012). Transformation of LEV-type zeolite into less dense CHA-type zeolite. Microporous and Mesoporous Materials, 158, 117-122. doi:10.1016/j.micromeso.2012.03.032 es_ES
dc.description.references Goel, S., Zones, S. I., & Iglesia, E. (2014). Encapsulation of Metal Clusters within MFI via Interzeolite Transformations and Direct Hydrothermal Syntheses and Catalytic Consequences of Their Confinement. Journal of the American Chemical Society, 136(43), 15280-15290. doi:10.1021/ja507956m es_ES
dc.description.references Zones, S. I. (1991). Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium iodide. Journal of the Chemical Society, Faraday Transactions, 87(22), 3709. doi:10.1039/ft9918703709 es_ES
dc.description.references Inoue, T., Itakura, M., Jon, H., Oumi, Y., Takahashi, A., Fujitani, T., & Sano, T. (2009). Synthesis of LEV zeolite by interzeolite conversion method and its catalytic performance in ethanol to olefins reaction. Microporous and Mesoporous Materials, 122(1-3), 149-154. doi:10.1016/j.micromeso.2009.02.027 es_ES
dc.description.references Itakura, M., Goto, I., Takahashi, A., Fujitani, T., Ide, Y., Sadakane, M., & Sano, T. (2011). Synthesis of high-silica CHA type zeolite by interzeolite conversion of FAU type zeolite in the presence of seed crystals. Microporous and Mesoporous Materials, 144(1-3), 91-96. doi:10.1016/j.micromeso.2011.03.041 es_ES
dc.description.references Martín, N., Boruntea, C. R., Moliner, M., & Corma, A. (2015). Efficient synthesis of the Cu-SSZ-39 catalyst for DeNOx applications. Chemical Communications, 51(55), 11030-11033. doi:10.1039/c5cc03200h es_ES
dc.description.references Inagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T., & Kubota, Y. (2013). Rapid Synthesis of an Aluminum-Rich MSE-Type Zeolite by the Hydrothermal Conversion of an FAU-Type Zeolite. Chemistry - A European Journal, 19(24), 7780-7786. doi:10.1002/chem.201300125 es_ES
dc.description.references Zones, S. I., & Nakagawa, Y. (1995). Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Studies in Surface Science and Catalysis, 45-52. doi:10.1016/s0167-2991(06)81871-9 es_ES
dc.description.references Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie International Edition, 43(2), 236-240. doi:10.1002/anie.200352723 es_ES
dc.description.references Fan, W., Wu, P., Namba, S., & Tatsumi, T. (2004). A Titanosilicate That Is Structurally Analogous to an MWW-Type Lamellar Precursor. Angewandte Chemie, 116(2), 238-242. doi:10.1002/ange.200352723 es_ES
dc.description.references De Baerdemaeker, T., Feyen, M., Vanbergen, T., Müller, U., Yilmaz, B., Xiao, F.-S., … Gies, H. (2014). From Layered Zeolite Precursors to Zeolites with a Three-Dimensional Porosity: Textural and Structural Modifications through Alkaline Treatment. Chemistry of Materials, 27(1), 316-326. doi:10.1021/cm504014d es_ES
dc.description.references Iyoki, K., Itabashi, K., & Okubo, T. (2014). Progress in seed-assisted synthesis of zeolites without using organic structure-directing agents. Microporous and Mesoporous Materials, 189, 22-30. doi:10.1016/j.micromeso.2013.08.008 es_ES
dc.description.references Honda, K., Itakura, M., Matsuura, Y., Onda, A., Ide, Y., Sadakane, M., & Sano, T. (2013). Role of Structural Similarity Between Starting Zeolite and Product Zeolite in the Interzeolite Conversion Process. Journal of Nanoscience and Nanotechnology, 13(4), 3020-3026. doi:10.1166/jnn.2013.7356 es_ES
dc.description.references Barrer, R. M. (1948). 33. Synthesis of a zeolitic mineral with chabazite-like sorptive properties. Journal of the Chemical Society (Resumed), 127. doi:10.1039/jr9480000127 es_ES
dc.description.references Barrer, R. M., & Riley, D. W. (1948). 34. Sorptive and molecular-sieve properties of a new zeolitic mineral. Journal of the Chemical Society (Resumed), 133. doi:10.1039/jr9480000133 es_ES
dc.description.references Barrer, R. M., Cole, J. F., & Sticher, H. (1968). Chemistry of soil minerals. Part V. Low temperature hydrothermal transformations of kaolinite. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 2475. doi:10.1039/j19680002475 es_ES
dc.description.references Subotić, B., Škrtić, D., Šmit, I., & Sekovanić, L. (1980). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 50(2), 498-508. doi:10.1016/0022-0248(80)90099-8 es_ES
dc.description.references Subotić, B., & Sekovanić, L. (1986). Transformation of zeolite A into hydroxysodalite. Journal of Crystal Growth, 75(3), 561-572. doi:10.1016/0022-0248(86)90102-8 es_ES
dc.description.references Subotić, B., Šmit, I., Madžija, O., & Sekovanić, L. (1982). Kinetic study of the transformation of zeolite A into zeolite P. Zeolites, 2(2), 135-142. doi:10.1016/s0144-2449(82)80015-8 es_ES
dc.description.references Khodabandeh, S., & Davis, M. E. (1997). Synthesis of CIT-3: a calcium aluminosilicate with the heulandite topology. Microporous Materials, 9(3-4), 149-160. doi:10.1016/s0927-6513(96)00098-3 es_ES
dc.description.references Khodabandeh, S., Lee, G., & Davis, M. E. (1997). CIT-4: The first synthetic analogue of brewsterite. Microporous Materials, 11(1-2), 87-95. doi:10.1016/s0927-6513(97)00036-9 es_ES
dc.description.references Yashiki, A., Honda, K., Fujimoto, A., Shibata, S., Ide, Y., Sadakane, M., & Sano, T. (2011). Hydrothermal conversion of FAU zeolite into LEV zeolite in the presence of non-calcined seed crystals. Journal of Crystal Growth, 325(1), 96-100. doi:10.1016/j.jcrysgro.2011.04.040 es_ES
dc.description.references Honda, K., Yashiki, A., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). Influence of seeding on FAU–∗BEA interzeolite conversions. Microporous and Mesoporous Materials, 142(1), 161-167. doi:10.1016/j.micromeso.2010.11.031 es_ES
dc.description.references Kerr, G. T. (1968). Chemistry of crystalline aluminosilicates. IV. Factors affecting the formation of zeolites X and B. The Journal of Physical Chemistry, 72(4), 1385-1386. doi:10.1021/j100850a056 es_ES
dc.description.references Xie, B., Song, J., Ren, L., Ji, Y., Li, J., & Xiao, F.-S. (2008). Organotemplate-Free and Fast Route for Synthesizing Beta Zeolite. Chemistry of Materials, 20(14), 4533-4535. doi:10.1021/cm801167e es_ES
dc.description.references Majano, G., Delmotte, L., Valtchev, V., & Mintova, S. (2009). Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template. Chemistry of Materials, 21(18), 4184-4191. doi:10.1021/cm900462u es_ES
dc.description.references Kamimura, Y., Chaikittisilp, W., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Critical Factors in the Seed-Assisted Synthesis of Zeolite Beta and «Green Beta» from OSDA-Free Na+-Aluminosilicate Gels. Chemistry - An Asian Journal, 5(10), 2182-2191. doi:10.1002/asia.201000234 es_ES
dc.description.references Xie, B., Zhang, H., Yang, C., Liu, S., Ren, L., Zhang, L., … Xiao, F.-S. (2011). Seed-directed synthesis of zeolites with enhanced performance in the absence of organic templates. Chemical Communications, 47(13), 3945. doi:10.1039/c0cc05414c es_ES
dc.description.references Kamimura, Y., Tanahashi, S., Itabashi, K., Sugawara, A., Wakihara, T., Shimojima, A., & Okubo, T. (2010). Crystallization Behavior of Zeolite Beta in OSDA-Free, Seed-Assisted Synthesis. The Journal of Physical Chemistry C, 115(3), 744-750. doi:10.1021/jp1098975 es_ES
dc.description.references Iyoki, K., Kamimura, Y., Itabashi, K., Shimojima, A., & Okubo, T. (2010). Synthesis of MTW-type Zeolites in the Absence of Organic Structure-directing Agent. Chemistry Letters, 39(7), 730-731. doi:10.1246/cl.2010.730 es_ES
dc.description.references Majano, G., Darwiche, A., Mintova, S., & Valtchev, V. (2009). Seed-Induced Crystallization of Nanosized Na-ZSM-5 Crystals. Industrial & Engineering Chemistry Research, 48(15), 7084-7091. doi:10.1021/ie8017252 es_ES
dc.description.references Zhang, H., Guo, Q., Ren, L., Yang, C., Zhu, L., Meng, X., … Xiao, F.-S. (2011). Organotemplate-free synthesis of high-silica ferrierite zeolite induced by CDO-structure zeolite building units. Journal of Materials Chemistry, 21(26), 9494. doi:10.1039/c1jm11786f es_ES
dc.description.references Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie International Edition, 48(52), 9884-9887. doi:10.1002/anie.200905214 es_ES
dc.description.references Yokoi, T., Yoshioka, M., Imai, H., & Tatsumi, T. (2009). Diversification of RTH-Type Zeolite and Its Catalytic Application. Angewandte Chemie, 121(52), 10068-10071. doi:10.1002/ange.200905214 es_ES
dc.description.references Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., & Okubo, T. (2012). A Working Hypothesis for Broadening Framework Types of Zeolites in Seed-Assisted Synthesis without Organic Structure-Directing Agent. Journal of the American Chemical Society, 134(28), 11542-11549. doi:10.1021/ja3022335 es_ES
dc.description.references Zones, S. I. (1990). Direct hydrothermal conversion of cubic P zeolite to organozeolite SSZ-13. Journal of the Chemical Society, Faraday Transactions, 86(20), 3467. doi:10.1039/ft9908603467 es_ES
dc.description.references Chan, I. Y., & Zones, S. I. (1989). Analytical electron microscopy (AEM) of cubic P zeolite to Nu-3 zeolite transformation. Zeolites, 9(1), 3-11. doi:10.1016/0144-2449(89)90002-x es_ES
dc.description.references Jon, H., Nakahata, K., Lu, B., Oumi, Y., & Sano, T. (2006). Hydrothermal conversion of FAU into ∗BEA zeolites. Microporous and Mesoporous Materials, 96(1-3), 72-78. doi:10.1016/j.micromeso.2006.06.024 es_ES
dc.description.references Jon, H., Sasaki, H., Inoue, T., Itakura, M., Takahashi, S., Oumi, Y., & Sano, T. (2008). Effects of structure-directing agents on hydrothermal conversion of FAU type zeolite. Studies in Surface Science and Catalysis, 229-232. doi:10.1016/s0167-2991(08)80184-x es_ES
dc.description.references Jon, H., Takahashi, S., Sasaki, H., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system. Microporous and Mesoporous Materials, 113(1-3), 56-63. doi:10.1016/j.micromeso.2007.11.003 es_ES
dc.description.references Roth, W. J., Nachtigall, P., Morris, R. E., & Čejka, J. (2014). Two-Dimensional Zeolites: Current Status and Perspectives. Chemical Reviews, 114(9), 4807-4837. doi:10.1021/cr400600f es_ES
dc.description.references Roth, W. J., Kresge, C. T., Vartuli, J. C., Leonowicz, M. E., Fung, A. S., & McCullen, S. B. (1995). MCM-36: The first pillared molecular sieve with zeoliteproperties. Catalysis by Microporous Materials, Proceedings of ZEOCAT ’95, 301-308. doi:10.1016/s0167-2991(06)81236-x es_ES
dc.description.references Corma, A., Fornes, V., Pergher, S. B., Maesen, T. L. M., & Buglass, J. G. (1998). Delaminated zeolite precursors as selective acidic catalysts. Nature, 396(6709), 353-356. doi:10.1038/24592 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie International Edition, 39(8), 1499-1501. doi:10.1002/(sici)1521-3773(20000417)39:8<1499::aid-anie1499>3.0.co;2-0 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). AlITQ-6 and TiITQ-6: Synthesis, Characterization, and Catalytic Activity. Angewandte Chemie, 112(8), 1559-1561. doi:10.1002/(sici)1521-3757(20000417)112:8<1559::aid-ange1559>3.0.co;2-u es_ES
dc.description.references Corma, A., Fornés, V., & Díaz, U. (2001). Chemical Communications, (24), 2642-2643. doi:10.1039/b108777k es_ES
dc.description.references Roth, W. J., & Čejka, J. (2011). Two-dimensional zeolites: dream or reality? Catalysis Science & Technology, 1(1), 43. doi:10.1039/c0cy00027b es_ES
dc.description.references C. T.Kresge W. J.Roth U.S. Patent 5266541 1993. es_ES
dc.description.references Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a es_ES
dc.description.references Roth, W. J., Nachtigall, P., Morris, R. E., Wheatley, P. S., Seymour, V. R., Ashbrook, S. E., … Čejka, J. (2013). A family of zeolites with controlled pore size prepared using a top-down method. Nature Chemistry, 5(7), 628-633. doi:10.1038/nchem.1662 es_ES
dc.description.references Verheyen, E., Joos, L., Van Havenbergh, K., Breynaert, E., Kasian, N., Gobechiya, E., … Martens, J. A. (2012). Design of zeolite by inverse sigma transformation. Nature Materials, 11(12), 1059-1064. doi:10.1038/nmat3455 es_ES
dc.description.references Khodabandeh, S., & Davis, M. E. (1997). Zeolites P1 and L as precursors for the preparation of alkaline-earth zeolites. Microporous Materials, 12(4-6), 347-359. doi:10.1016/s0927-6513(97)00083-7 es_ES
dc.description.references Khodabandeh, S., & Davis, M. E. (1997). Alteration of perlite to calcium zeolites. Microporous Materials, 9(3-4), 161-172. doi:10.1016/s0927-6513(96)00100-9 es_ES
dc.description.references Van Tendeloo, L., Gobechiya, E., Breynaert, E., Martens, J. A., & Kirschhock, C. E. A. (2013). Alkaline cations directing the transformation of FAU zeolites into five different framework types. Chemical Communications, 49(100), 11737. doi:10.1039/c3cc47292b es_ES
dc.description.references Nedyalkova, R., Montreuil, C., Lambert, C., & Olsson, L. (2013). Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 56(9-10), 550-557. doi:10.1007/s11244-013-0015-4 es_ES
dc.description.references Ji, Y., Deimund, M. A., Bhawe, Y., & Davis, M. E. (2015). Organic-Free Synthesis of CHA-Type Zeolite Catalysts for the Methanol-to-Olefins Reaction. ACS Catalysis, 5(7), 4456-4465. doi:10.1021/acscatal.5b00404 es_ES
dc.description.references D.Xie WO2016/122724 2016. es_ES
dc.description.references Daniels, R. H., Kerr, G. T., & Rollmann, L. D. (1978). Cationic polymers as templates in zeolite crystallization. Journal of the American Chemical Society, 100(10), 3097-3100. doi:10.1021/ja00478a024 es_ES
dc.description.references Honda, K., Yashiki, A., Sadakane, M., & Sano, T. (2014). Hydrothermal conversion of FAU and ∗BEA-type zeolites into MAZ-type zeolites in the presence of non-calcined seed crystals. Microporous and Mesoporous Materials, 196, 254-260. doi:10.1016/j.micromeso.2014.05.028 es_ES
dc.description.references De Baerdemaeker, T., Yilmaz, B., Müller, U., Feyen, M., Xiao, F.-S., Zhang, W., … De Vos, D. (2013). Catalytic applications of OSDA-free Beta zeolite. Journal of Catalysis, 308, 73-81. doi:10.1016/j.jcat.2013.05.025 es_ES
dc.description.references Kamimura, Y., Itabashi, K., & Okubo, T. (2012). Seed-assisted, OSDA-free synthesis of MTW-type zeolite and «Green MTW» from sodium aluminosilicate gel systems. Microporous and Mesoporous Materials, 147(1), 149-156. doi:10.1016/j.micromeso.2011.05.038 es_ES
dc.description.references Kamimura, Y., Itabashi, K., Kon, Y., Endo, A., & Okubo, T. (2017). Seed-Assisted Synthesis of MWW-Type Zeolite with Organic Structure-Directing Agent-Free Na-Aluminosilicate Gel System. Chemistry - An Asian Journal, 12(5), 530-542. doi:10.1002/asia.201601569 es_ES
dc.description.references Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095 es_ES
dc.description.references Zhang, H., Yang, C., Zhu, L., Meng, X., Yilmaz, B., Müller, U., … Xiao, F.-S. (2012). Organotemplate-free and seed-directed synthesis of levyne zeolite. Microporous and Mesoporous Materials, 155, 1-7. doi:10.1016/j.micromeso.2011.12.051 es_ES
dc.description.references Imai, H., Hayashida, N., Yokoi, T., & Tatsumi, T. (2014). Direct crystallization of CHA-type zeolite from amorphous aluminosilicate gel by seed-assisted method in the absence of organic-structure-directing agents. Microporous and Mesoporous Materials, 196, 341-348. doi:10.1016/j.micromeso.2014.05.043 es_ES
dc.description.references DWYER, F., & CHU, P. (1979). ZSM-4 crystallization via faujasite metamorphosis. Journal of Catalysis, 59(2), 263-271. doi:10.1016/s0021-9517(79)80030-5 es_ES
dc.description.references PERROTTA, A. (1978). The synthesis, characterization, and catalytic activity of omega and ZSM-4 zeolites. Journal of Catalysis, 55(2), 240-249. doi:10.1016/0021-9517(78)90210-5 es_ES
dc.description.references S. I.Zones US 4544538 1985. es_ES
dc.description.references Zones, S. I., & Van Nordstrand, R. A. (1988). Novel zeolite transformations: The template-mediated conversion of Cubic P zeolite to SSZ-13. Zeolites, 8(3), 166-174. doi:10.1016/s0144-2449(88)80302-6 es_ES
dc.description.references Itakura, M., Inoue, T., Takahashi, A., Fujitani, T., Oumi, Y., & Sano, T. (2008). Synthesis of High-silica CHA Zeolite from FAU Zeolite in the Presence of Benzyltrimethylammonium Hydroxide. Chemistry Letters, 37(9), 908-909. doi:10.1246/cl.2008.908 es_ES
dc.description.references Yamanaka, N., Itakura, M., Kiyozumi, Y., Ide, Y., Sadakane, M., & Sano, T. (2012). Acid stability evaluation of CHA-type zeolites synthesized by interzeolite conversion of FAU-type zeolite and their membrane application for dehydration of acetic acid aqueous solution. Microporous and Mesoporous Materials, 158, 141-147. doi:10.1016/j.micromeso.2012.03.030 es_ES
dc.description.references Yamanaka, N., Itakura, M., Kiyozumi, Y., Sadakane, M., & Sano, T. (2013). Effect of Structure-Directing Agents on FAU–CHA Interzeolite Conversion and Preparation of High Pervaporation Performance CHA Zeolite Membranes for the Dehydration of Acetic Acid Solution. Bulletin of the Chemical Society of Japan, 86(11), 1333-1340. doi:10.1246/bcsj.20130189 es_ES
dc.description.references Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2016). Nanosized CHA zeolites with high thermal and hydrothermal stability derived from the hydrothermal conversion of FAU zeolite. Microporous and Mesoporous Materials, 225, 524-533. doi:10.1016/j.micromeso.2016.01.045 es_ES
dc.description.references Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Fe-Containing Zeolites for NH3 -SCR of NO x : Effect of Structure, Synthesis Procedure, and Chemical Composition on Catalytic Performance and Stability. Chemistry - A European Journal, 23(54), 13404-13414. doi:10.1002/chem.201701742 es_ES
dc.description.references Xiong, X., Yuan, D., Wu, Q., Chen, F., Meng, X., Lv, R., … Xiao, F.-S. (2017). Efficient and rapid transformation of high silica CHA zeolite from FAU zeolite in the absence of water. Journal of Materials Chemistry A, 5(19), 9076-9080. doi:10.1039/c7ta01749a es_ES
dc.description.references Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., & Sano, T. (2017). Incorporation of various heterometal atoms in CHA zeolites by hydrothermal conversion of FAU zeolite and their performance for selective catalytic reduction of NO x with ammonia. Microporous and Mesoporous Materials, 246, 89-101. doi:10.1016/j.micromeso.2017.03.018 es_ES
dc.description.references Kunitake, Y., Takata, T., Yamasaki, Y., Yamanaka, N., Tsunoji, N., Takamitsu, Y., … Sano, T. (2015). Synthesis of titanated chabazite with enhanced thermal stability by hydrothermal conversion of titanated faujasite. Microporous and Mesoporous Materials, 215, 58-66. doi:10.1016/j.micromeso.2015.05.023 es_ES
dc.description.references Sasaki, H., Jon, H., Itakura, M., Inoue, T., Ikeda, T., Oumi, Y., & Sano, T. (2008). Hydrothermal conversion of FAU zeolite into aluminous MTN zeolite. Journal of Porous Materials, 16(4), 465-471. doi:10.1007/s10934-008-9220-0 es_ES
dc.description.references Shibata, S., Itakura, M., Ide, Y., Sadakane, M., & Sano, T. (2011). FAU–LEV interzeolite conversion in fluoride media. Microporous and Mesoporous Materials, 138(1-3), 32-39. doi:10.1016/j.micromeso.2010.09.034 es_ES
dc.description.references T. M.Davis US9156706 2015. es_ES
dc.description.references Moliner, M., Franch, C., Palomares, E., Grill, M., & Corma, A. (2012). Cu–SSZ-39, an active and hydrothermally stable catalyst for the selective catalytic reduction of NOx. Chemical Communications, 48(66), 8264. doi:10.1039/c2cc33992g es_ES
dc.description.references Dusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577 es_ES
dc.description.references S. I.Zones Y.Nakagawa S. T.Evans G. S.Lee US 5958370 1999; es_ES
dc.description.references Wagner, P., Nakagawa, Y., Lee, G. S., Davis, M. E., Elomari, S., Medrud, R. C., & Zones, S. I. (2000). Guest/Host Relationships in the Synthesis of the Novel Cage-Based Zeolites SSZ-35, SSZ-36, and SSZ-39. Journal of the American Chemical Society, 122(2), 263-273. doi:10.1021/ja990722u es_ES
dc.description.references Nakazawa, N., Inagaki, S., & Kubota, Y. (2016). Direct Hydrothermal Synthesis of High-silica SSZ-39 Zeolite with Small Particle Size. Chemistry Letters, 45(8), 919-921. doi:10.1246/cl.160370 es_ES
dc.description.references Bhadra, B. N., Seo, P. W., Jun, J. W., Jeong, J. H., Kim, T.-W., Kim, C.-U., & Jhung, S. H. (2016). Syntheses of SSZ-39 and mordenite zeolites with N,N-dialkyl-2,6-dimethyl-piperidinium hydroxide/iodides: Phase-selective syntheses with anions. Microporous and Mesoporous Materials, 235, 135-142. doi:10.1016/j.micromeso.2016.08.003 es_ES
dc.description.references Martín, N., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Iron-Containing SSZ-39 (AEI) Zeolite: An Active and Stable High-Temperature NH3 -SCR Catalyst. ChemCatChem, 9(10), 1754-1757. doi:10.1002/cctc.201601627 es_ES
dc.description.references Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c es_ES
dc.description.references Martín, N., Paris, C., Vennestrøm, P. N. R., Thøgersen, J. R., Moliner, M., & Corma, A. (2017). Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Applied Catalysis B: Environmental, 217, 125-136. doi:10.1016/j.apcatb.2017.05.082 es_ES
dc.description.references Itakura, M., Oumi, Y., Sadakane, M., & Sano, T. (2010). Synthesis of high-silica offretite by the interzeolite conversion method. Materials Research Bulletin, 45(5), 646-650. doi:10.1016/j.materresbull.2010.01.007 es_ES
dc.description.references Kubota, Y., Inagaki, S., Nishita, Y., Itabashi, K., Tsuboi, Y., Syahylah, T., & Okubo, T. (2015). Remarkable enhancement of catalytic activity and selectivity of MSE-type zeolite by post-synthetic modification. Catalysis Today, 243, 85-91. doi:10.1016/j.cattod.2014.06.039 es_ES
dc.description.references Shi, Y., Xing, E., Gao, X., Liu, D., Xie, W., Zhang, F., … Shu, X. (2014). Topology reconstruction from FAU to MWW structure. Microporous and Mesoporous Materials, 200, 269-278. doi:10.1016/j.micromeso.2014.08.045 es_ES
dc.description.references Schmidt, J. E., Chen, C.-Y., Brand, S. K., Zones, S. I., & Davis, M. E. (2016). Facile Synthesis, Characterization, and Catalytic Behavior of a Large-Pore Zeolite with the IWV Framework. Chemistry - A European Journal, 22(12), 4022-4029. doi:10.1002/chem.201504717 es_ES
dc.description.references Girnus, I., Hoffmann, K., Marlow, F., Caro, J., & Döring, G. (1994). Large CoAPO-5 single crystals: Microwave synthesis and anisotropic optical absorption. Microporous Materials, 2(6), 537-541. doi:10.1016/0927-6513(93)e0066-p es_ES
dc.description.references Maekawa, H., Kubota, Y., & Sugi, Y. (2004). Hydrothermal Synthesis of [Al]-SSZ-24 from [Al]-Beta Zeolite ([Al]-BEA) as Precursors. Chemistry Letters, 33(9), 1126-1127. doi:10.1246/cl.2004.1126 es_ES
dc.description.references Ahedi, R. K., Kubota, Y., & Sugi, Y. (2001). Journal of Materials Chemistry, 11(12), 2922-2924. doi:10.1039/b105438b es_ES
dc.description.references Kubota, Y., Maekawa, H., Miyata, S., Tatsumi, T., & Sugi, Y. (2007). Hydrothermal synthesis of metallosilicate SSZ-24 from metallosilicate beta as precursors. Microporous and Mesoporous Materials, 101(1-2), 115-126. doi:10.1016/j.micromeso.2006.11.037 es_ES
dc.description.references Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359(6397), 710-712. doi:10.1038/359710a0 es_ES
dc.description.references Beck, J. S., Vartuli, J. C., Roth, W. J., Leonowicz, M. E., Kresge, C. T., Schmitt, K. D., … Schlenker, J. L. (1992). A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 114(27), 10834-10843. doi:10.1021/ja00053a020 es_ES
dc.description.references Corma, A. (1997). From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis. Chemical Reviews, 97(6), 2373-2420. doi:10.1021/cr960406n es_ES
dc.description.references Tao, Y., Kanoh, H., Abrams, L., & Kaneko, K. (2006). Mesopore-Modified Zeolites:  Preparation, Characterization, and Applications. Chemical Reviews, 106(3), 896-910. doi:10.1021/cr040204o es_ES
dc.description.references Prasomsri, T., Jiao, W., Weng, S. Z., & Garcia Martinez, J. (2015). Mesostructured zeolites: bridging the gap between zeolites and MCM-41. Chemical Communications, 51(43), 8900-8911. doi:10.1039/c4cc10391b es_ES
dc.description.references Chal, R., Cacciaguerra, T., van Donk, S., & Gérardin, C. (2010). Pseudomorphic synthesis of mesoporous zeolite Y crystals. Chemical Communications, 46(41), 7840. doi:10.1039/c0cc02073g es_ES
dc.description.references García-Martínez, J., Johnson, M., Valla, J., Li, K., & Ying, J. Y. (2012). Mesostructured zeolite Y—high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2(5), 987. doi:10.1039/c2cy00309k es_ES
dc.description.references Liu, S., Cao, X., Li, L., Li, C., Ji, Y., & Xiao, F.-S. (2008). Preformed zeolite precursor route for synthesis of mesoporous X zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 318(1-3), 269-274. doi:10.1016/j.colsurfa.2008.01.002 es_ES
dc.description.references Díaz, U., & Corma, A. (2014). Layered zeolitic materials: an approach to designing versatile functional solids. Dalton Transactions, 43(27), 10292. doi:10.1039/c3dt53181c es_ES
dc.description.references Leonowicz, M. E., Lawton, J. A., Lawton, S. L., & Rubin, M. K. (1994). MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems. Science, 264(5167), 1910-1913. doi:10.1126/science.264.5167.1910 es_ES
dc.description.references Lawton, S. L., Fung, A. S., Kennedy, G. J., Alemany, L. B., Chang, C. D., Hatzikos, G. H., … Woessner, D. E. (1996). Zeolite MCM-49:  A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 100(9), 3788-3798. doi:10.1021/jp952871e es_ES
dc.description.references Corma, A., Díaz, U., García, T., Sastre, G., & Velty, A. (2010). Multifunctional Hybrid Organic−Inorganic Catalytic Materials with a Hierarchical System of Well-Defined Micro- and Mesopores. Journal of the American Chemical Society, 132(42), 15011-15021. doi:10.1021/ja106272z es_ES
dc.description.references Corma, A., Diaz, U., Fornés, V., Guil, J. M., Martínez-Triguero, J., & Creyghton, E. J. (2000). Characterization and Catalytic Activity of MCM-22 and MCM-56 Compared with ITQ-2. Journal of Catalysis, 191(1), 218-224. doi:10.1006/jcat.1999.2774 es_ES
dc.description.references Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., & Baerlocher, C. (1998). Synthesis and Structural Characterization of MWW Type Zeolite ITQ-1, the Pure Silica Analog of MCM-22 and SSZ-25. The Journal of Physical Chemistry B, 102(1), 44-51. doi:10.1021/jp972319k es_ES
dc.description.references Xu, L., Ji, X., Jiang, J.-G., Han, L., Che, S., & Wu, P. (2015). Intergrown Zeolite MWW Polymorphs Prepared by the Rapid Dissolution–Recrystallization Route. Chemistry of Materials, 27(23), 7852-7860. doi:10.1021/acs.chemmater.5b03658 es_ES
dc.description.references Corma, A., Diaz, U., Domine, M. E., & Fornés, V. (2000). New Aluminosilicate and Titanosilicate Delaminated Materials Active for Acid Catalysis, and Oxidation Reactions Using H2O2. Journal of the American Chemical Society, 122(12), 2804-2809. doi:10.1021/ja9938130 es_ES
dc.description.references Osman, M., Al-Khattaf, S., Díaz, U., Martínez, C., & Corma, A. (2016). Influencing the activity and selectivity of alkylaromatic catalytic transformations by varying the degree of delamination in MWW zeolites. Catalysis Science & Technology, 6(9), 3166-3181. doi:10.1039/c5cy01675d es_ES
dc.description.references RODRIGUEZ, I., CLIMENT, M., IBORRA, S., FORNES, V., & CORMA, A. (2000). Use of delaminated zeolites (ITQ-2) and mesoporous molecular sieves in the production of fine chemicals: Preparation of dimethylacetals and tetrahydropyranylation of alcohols and phenols. Journal of Catalysis, 192(2), 441-447. doi:10.1006/jcat.2000.2861 es_ES
dc.description.references Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9 es_ES
dc.description.references Corma, A., Díaz, U., Fornés, V., Jordá, J. L., Domine, M., & Rey, F. (1999). Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chemical Communications, (9), 779-780. doi:10.1039/a900763f es_ES
dc.description.references Liu, L., Díaz, U., Arenal, R., Agostini, G., Concepción, P., & Corma, A. (2016). Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nature Materials, 16(1), 132-138. doi:10.1038/nmat4757 es_ES
dc.description.references Gies, H., & Gunawardane, R. P. (1987). One-step synthesis, properties and crystal structure of aluminium-free ferrierite. Zeolites, 7(5), 442-445. doi:10.1016/0144-2449(87)90012-1 es_ES
dc.description.references Schreyeck, L., Caullet, P., Mougenel, J. C., Guth, J. L., & Marler, B. (1996). PREFER: a new layered (alumino) silicate precursor of FER-type zeolite. Microporous Materials, 6(5-6), 259-271. doi:10.1016/0927-6513(96)00032-6 es_ES
dc.description.references Ikeda, T., Kayamori, S., & Mizukami, F. (2009). Synthesis and crystal structure of layered silicate PLS-3 and PLS-4 as a topotactic zeolite precursor. Journal of Materials Chemistry, 19(31), 5518. doi:10.1039/b905415d es_ES
dc.description.references Yang, B., Jiang, J., Xu, H., Liu, Y., Peng, H., & Wu, P. (2013). Selective skeletal isomerization of 1-butene over FER-type zeolites derived from PLS-3 lamellar precursors. Applied Catalysis A: General, 455, 107-113. doi:10.1016/j.apcata.2013.01.024 es_ES
dc.description.references Burton, A., Accardi, R. J., Lobo, R. F., Falcioni, M., & Deem, M. W. (2000). MCM-47:  A Highly Crystalline Silicate Composed of Hydrogen-Bonded Ferrierite Layers. Chemistry of Materials, 12(10), 2936-2942. doi:10.1021/cm000243q es_ES
dc.description.references A.Corma U.Díaz V.Fornés WO2002060815 2002. es_ES
dc.description.references Chica, A., Diaz, U., Fornés, V., & Corma, A. (2009). Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 147(3-4), 179-185. doi:10.1016/j.cattod.2008.10.046 es_ES
dc.description.references Marler, B., Wang, Y., Song, J., & Gies, H. (2014). Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans., 43(27), 10396-10416. doi:10.1039/c4dt00262h es_ES
dc.description.references Dorset, D. L., & Kennedy, G. J. (2004). Crystal Structure of MCM-65:  An Alternative Linkage of Ferrierite Layers. The Journal of Physical Chemistry B, 108(39), 15216-15222. doi:10.1021/jp040305q es_ES
dc.description.references Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie International Edition, 43(37), 4892-4896. doi:10.1002/anie.200460168 es_ES
dc.description.references Ikeda, T., Akiyama, Y., Oumi, Y., Kawai, A., & Mizukami, F. (2004). The Topotactic Conversion of a Novel Layered Silicate into a New Framework Zeolite. Angewandte Chemie, 116(37), 5000-5004. doi:10.1002/ange.200460168 es_ES
dc.description.references Tsunoji, N., Ikeda, T., Ide, Y., Sadakane, M., & Sano, T. (2012). Synthesis and characteristics of novel layered silicates HUS-2 and HUS-3 derived from a SiO2–choline hydroxide–NaOH–H2O system. Journal of Materials Chemistry, 22(27), 13682. doi:10.1039/c2jm31872e es_ES
dc.description.references Wu, P., Ruan, J., Wang, L., Wu, L., Wang, Y., Liu, Y., … Tatsumi, T. (2008). Methodology for Synthesizing Crystalline Metallosilicates with Expanded Pore Windows Through Molecular Alkoxysilylation of Zeolitic Lamellar Precursors. Journal of the American Chemical Society, 130(26), 8178-8187. doi:10.1021/ja0758739 es_ES
dc.description.references Martínez-Franco, R., Paris, C., Martínez-Triguero, J., Moliner, M., & Corma, A. (2017). Direct synthesis of the aluminosilicate form of the small pore CDO zeolite with novel OSDAs and the expanded polymorphs. Microporous and Mesoporous Materials, 246, 147-157. doi:10.1016/j.micromeso.2017.03.014 es_ES
dc.description.references T. V.Whittam US Pat 4397825 1983. es_ES
dc.description.references Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie International Edition, 43(37), 4933-4937. doi:10.1002/anie.200460085 es_ES
dc.description.references Zanardi, S., Alberti, A., Cruciani, G., Corma, A., Fornés, V., & Brunelli, M. (2004). Crystal Structure Determination of Zeolite Nu-6(2) and Its Layered Precursor Nu-6(1). Angewandte Chemie, 116(37), 5041-5045. doi:10.1002/ange.200460085 es_ES
dc.description.references Andrews, S. J., Papiz, M. Z., McMeeking, R., Blake, A. J., Lowe, B. M., Franklin, K. R., … Harding, M. M. (1988). Piperazine silicate (EU 19): the structure of a very small crystal determined with synchrotron radiation. Acta Crystallographica Section B Structural Science, 44(1), 73-77. doi:10.1107/s0108768187009820 es_ES
dc.description.references Marler, B., Camblor, M. A., & Gies, H. (2006). The disordered structure of silica zeolite EU-20b, obtained by topotactic condensation of the piperazinium containing layer silicate EU-19. Microporous and Mesoporous Materials, 90(1-3), 87-101. doi:10.1016/j.micromeso.2005.10.047 es_ES
dc.description.references Sun, J., Bonneau, C., Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Moliner, M., … Zou, X. (2009). The ITQ-37 mesoporous chiral zeolite. Nature, 458(7242), 1154-1157. doi:10.1038/nature07957 es_ES
dc.description.references Paillaud, J.-L. (2004). Extra-Large-Pore Zeolites with Two-Dimensional Channels Formed by 14 and 12 Rings. Science, 304(5673), 990-992. doi:10.1126/science.1098242 es_ES
dc.description.references Roth, W. J., Shvets, O. V., Shamzhy, M., Chlubná, P., Kubů, M., Nachtigall, P., & Čejka, J. (2011). Postsynthesis Transformation of Three-Dimensional Framework into a Lamellar Zeolite with Modifiable Architecture. Journal of the American Chemical Society, 133(16), 6130-6133. doi:10.1021/ja200741r es_ES
dc.description.references Kasian, N., Tuel, A., Verheyen, E., Kirschhock, C. E. A., Taulelle, F., & Martens, J. A. (2014). NMR Evidence for Specific Germanium Siting in IM-12 Zeolite. Chemistry of Materials, 26(19), 5556-5565. doi:10.1021/cm502525w es_ES
dc.description.references Corma, A., Rey, F., Valencia, S., Jordá, J. L., & Rius, J. (2003). A zeolite with interconnected 8-, 10- and 12-ring pores and its unique catalytic selectivity. Nature Materials, 2(7), 493-497. doi:10.1038/nmat921 es_ES
dc.description.references Castañeda, R., Corma, A., Fornés, V., Rey, F., & Rius, J. (2003). Synthesis of a New Zeolite Structure ITQ-24, with Intersecting 10- and 12-Membered Ring Pores. Journal of the American Chemical Society, 125(26), 7820-7821. doi:10.1021/ja035534p es_ES
dc.description.references Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). A Zeolite Structure (ITQ-13) with Three Sets of Medium-Pore Crossing Channels Formed by9- and 10-Rings. Angewandte Chemie International Edition, 42(10), 1156-1159. doi:10.1002/anie.200390304 es_ES
dc.description.references Corma, A., Puche, M., Rey, F., Sankar, G., & Teat, S. J. (2003). Angewandte Chemie, 115(10), 1188-1191. doi:10.1002/ange.200390275 es_ES
dc.description.references Mazur, M., Chlubná-Eliášová, P., Roth, W. J., & Čejka, J. (2014). Intercalation chemistry of layered zeolite precursor IPC-1P. Catalysis Today, 227, 37-44. doi:10.1016/j.cattod.2013.10.051 es_ES
dc.description.references Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie International Edition, 53(27), 7048-7052. doi:10.1002/anie.201400600 es_ES
dc.description.references Chlubná-Eliášová, P., Tian, Y., Pinar, A. B., Kubů, M., Čejka, J., & Morris, R. E. (2014). The Assembly-Disassembly-Organization-Reassembly Mechanism for 3D-2D-3D Transformation of Germanosilicate IWW Zeolite. Angewandte Chemie, 126(27), 7168-7172. doi:10.1002/ange.201400600 es_ES
dc.description.references Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie International Edition, 56(15), 4324-4327. doi:10.1002/anie.201700590 es_ES
dc.description.references Kasneryk, V., Shamzhy, M., Opanasenko, M., Wheatley, P. S., Morris, S. A., Russell, S. E., … Morris, R. E. (2017). Expansion of the ADOR Strategy for the Synthesis of Zeolites: The Synthesis of IPC-12 from Zeolite UOV. Angewandte Chemie, 129(15), 4388-4391. doi:10.1002/ange.201700590 es_ES
dc.description.references Firth, D. S., Morris, S. A., Wheatley, P. S., Russell, S. E., Slawin, A. M. Z., Dawson, D. M., … Morris, R. E. (2017). Assembly–Disassembly–Organization–Reassembly Synthesis of Zeolites Based on cfi-Type Layers. Chemistry of Materials, 29(13), 5605-5611. doi:10.1021/acs.chemmater.7b01181 es_ES
dc.description.references Zones, S. I. (2011). Translating new materials discoveries in zeolite research to commercial manufacture. Microporous and Mesoporous Materials, 144(1-3), 1-8. doi:10.1016/j.micromeso.2011.03.039 es_ES
dc.description.references Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A., & Katz, A. (2017). Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catalysis Science & Technology, 7(19), 4259-4275. doi:10.1039/c7cy00881c es_ES
dc.description.references Tomkins, P., Ranocchiari, M., & van Bokhoven, J. A. (2017). Direct Conversion of Methane to Methanol under Mild Conditions over Cu-Zeolites and beyond. Accounts of Chemical Research, 50(2), 418-425. doi:10.1021/acs.accounts.6b00534 es_ES
dc.description.references Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. F., & Szanyi, J. (2015). Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chemical Society Reviews, 44(20), 7371-7405. doi:10.1039/c5cs00108k es_ES
dc.description.references Moliner, M., & Corma, A. (2018). General Aspects on Structure and Reactivity of Framework and Extra-framework Metals in Zeolite Materials. Structure and Reactivity of Metals in Zeolite Materials, 53-90. doi:10.1007/430_2017_21 es_ES
dc.description.references A. W.Burton WO2014/099261 2014; es_ES
dc.description.references Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f es_ES
dc.description.references Gallego, E. M., Paris, C., Díaz-Rey, M. R., Martínez-Armero, M. E., Martínez-Triguero, J., Martínez, C., … Corma, A. (2017). Simple organic structure directing agents for synthesizing nanocrystalline zeolites. Chemical Science, 8(12), 8138-8149. doi:10.1039/c7sc02858j es_ES
dc.description.references Bereciartua, P. J., Cantín, Á., Corma, A., Jordá, J. L., Palomino, M., Rey, F., … Casty, G. L. (2017). Control of zeolite framework flexibility and pore topology for separation of ethane and ethylene. Science, 358(6366), 1068-1071. doi:10.1126/science.aao0092 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem