- -

Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lascano-Aimacaña, Diego Sebastián es_ES
dc.contributor.author Garcia-Garcia, Daniel es_ES
dc.contributor.author Rojas-Lema, Sandra Paola es_ES
dc.contributor.author Quiles-Carrillo, Luis es_ES
dc.contributor.author Balart, Rafael es_ES
dc.contributor.author Boronat, Teodomiro es_ES
dc.date.accessioned 2020-11-03T04:30:54Z
dc.date.available 2020-11-03T04:30:54Z
dc.date.issued 2020-06 es_ES
dc.identifier.uri http://hdl.handle.net/10251/153834
dc.description.abstract [EN] In the present work, green¿composites from a partially biobased epoxy resin (BioEP) reinforced with lignocellulosic particles, obtained from flax industry by¿products or wastes, have been manufactured by casting. In this study, the flaxseed has been crushed by two different mechanical milling processes to achieve different particle sizes, namely coarse size (CFF), and fine size (FFF) particle flaxseed flour, with a particle size ranging between 100¿220 ¿m and 40¿140 ¿m respectively. Subsequently, different loadings of each particle size (10, 20, 30, and 40 wt%) were mixed with the BioEP resin and poured into a mold and subjected to a curing cycle to obtain solid samples for mechanical, thermal, water absorption, and morphological characterization. The main aim of this research was to study the effect of the particle size and its content on the overall properties of composites with BioEP. The results show that the best mechanical properties were obtained for composites with a low reinforcement content (10 wt%) and with the finest particle size (FFF) due to a better dispersion into the matrix, and a better polymer¿particle interaction too. This also resulted in a lower water absorption capacity due to the presence of fewer voids in the developed composites. Therefore, this study shows the feasibility of using flax wastes from the seeds as a filler in highly environmentally friendly composites with a wood¿like appearance with potential use in furniture or automotive sectors. es_ES
dc.description.sponsorship This research was funded by Spanish Ministry of Science, Innovation, and Universities (MICIU), project numbers MAT2017-84909-C2-2-R. This work was supported by the POLISABIO program grant number (2019-A02). D. Lascano thanks Universitat Politècnica de València (UPV) for the grant received through the PAID-01-18 program. D. Garcia-Garcia wants to thank Generalitat Valenciana (GVA) for their financial support through a post-doctoral grant (APOSTD/2019/201). S. Rojas-Lema is a recipient of a Santiago Grisolía contract (GRISOLIAP/2019/132) from GVA. L. Quiles-Carrillo wants to thank GV for his FPI grant (ACIF/2016/182) and MECD for his FPU grant (FPU15/03812). Microscopy services at UPV are acknowledged for their help in collecting and analyzing FESEM images. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Applied Sciences es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Flax seed es_ES
dc.subject Biobased epoxy es_ES
dc.subject Green composite es_ES
dc.subject Waste valorization es_ES
dc.subject Size particle es_ES
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.subject.classification INGENIERIA DE LOS PROCESOS DE FABRICACION es_ES
dc.title Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/app10113688 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-01-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2016%2F182/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F03812/ES/FPU15%2F03812/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-84909-C2-2-R/ES/PROCESADO Y OPTIMIZACION DE MATERIALES AVANZADOS DERIVADOS DE ESTRUCTURAS PROTEICAS Y COMPONENTES LIGNOCELULOSICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//GRISOLIAP%2F2019%2F132/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F201/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//UPV-FISABIO-2019-A02/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Tecnología de Materiales - Institut de Tecnologia de Materials es_ES
dc.description.bibliographicCitation Lascano-Aimacaña, DS.; Garcia-Garcia, D.; Rojas-Lema, SP.; Quiles-Carrillo, L.; Balart, R.; Boronat, T. (2020). Manufacturing and Characterization of Green Composites with Partially Biobased Epoxy Resin and Flaxseed Flour Wastes. Applied Sciences. 10(11):1-23. https://doi.org/10.3390/app10113688 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/app10113688 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2076-3417 es_ES
dc.relation.pasarela S\413128 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana es_ES
dc.description.references Capezza, A. J., Newson, W. R., Olsson, R. T., Hedenqvist, M. S., & Johansson, E. (2019). Advances in the Use of Protein-Based Materials: Toward Sustainable Naturally Sourced Absorbent Materials. ACS Sustainable Chemistry & Engineering, 7(5), 4532-4547. doi:10.1021/acssuschemeng.8b05400 es_ES
dc.description.references Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. doi:10.1186/2194-0517-2-8 es_ES
dc.description.references Kim, J.-Y., Lee, H. W., Lee, S. M., Jae, J., & Park, Y.-K. (2019). Overview of the recent advances in lignocellulose liquefaction for producing biofuels, bio-based materials and chemicals. Bioresource Technology, 279, 373-384. doi:10.1016/j.biortech.2019.01.055 es_ES
dc.description.references Boronat, T., Fombuena, V., Garcia-Sanoguera, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials & Design, 68, 177-185. doi:10.1016/j.matdes.2014.12.027 es_ES
dc.description.references Naghmouchi, I., Mutjé, P., & Boufi, S. (2015). Olive stones flour as reinforcement in polypropylene composites: A step forward in the valorization of the solid waste from the olive oil industry. Industrial Crops and Products, 72, 183-191. doi:10.1016/j.indcrop.2014.11.051 es_ES
dc.description.references Zaaba, N. F., & Ismail, H. (2019). Thermoplastic/Natural Filler Composites: A Short Review. Journal of Physical Science, 30(Supp.1), 81-99. doi:10.21315/jps2019.30.s1.5 es_ES
dc.description.references Garcia-Garcia, D., Carbonell-Verdu, A., Jordá-Vilaplana, A., Balart, R., & Garcia-Sanoguera, D. (2016). Development and characterization of green composites from bio-based polyethylene and peanut shell. Journal of Applied Polymer Science, 133(37). doi:10.1002/app.43940 es_ES
dc.description.references Torres-Giner, S., Montanes, N., Fenollar, O., García-Sanoguera, D., & Balart, R. (2016). Development and optimization of renewable vinyl plastisol/wood flour composites exposed to ultraviolet radiation. Materials & Design, 108, 648-658. doi:10.1016/j.matdes.2016.07.037 es_ES
dc.description.references Prabu, V. A., Johnson, R. D. J., Amuthakkannan, P., & Manikandan, V. (2017). Usage of industrial wastes as particulate composite for environment management: Hardness, Tensile and Impact studies. Journal of Environmental Chemical Engineering, 5(1), 1289-1301. doi:10.1016/j.jece.2017.02.007 es_ES
dc.description.references Prabhakar, M. N., Shah, A. U. R., Rao, K. C., & Song, J.-I. (2015). Mechanical and thermal properties of epoxy composites reinforced with waste peanut shell powder as a bio-filler. Fibers and Polymers, 16(5), 1119-1124. doi:10.1007/s12221-015-1119-1 es_ES
dc.description.references Ikladious, N., Shukry, N., El-Kalyoubi, S., Asaad, J., Mansour, S., Tawfik, S., & Abou-Zeid, R. (2017). Eco-friendly composites based on peanut shell powder / unsaturated polyester resin. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(5), 955-964. doi:10.1177/1464420717722377 es_ES
dc.description.references Quiles-Carrillo, L., Montanes, N., Garcia-Garcia, D., Carbonell-Verdu, A., Balart, R., & Torres-Giner, S. (2018). Effect of different compatibilizers on injection-molded green composite pieces based on polylactide filled with almond shell flour. Composites Part B: Engineering, 147, 76-85. doi:10.1016/j.compositesb.2018.04.017 es_ES
dc.description.references VK, S., & G, B. (2016). Experimental Determination of Mechanical and Physical Properties of Almond Shell Particles Filled Biocomposite in Modified Epoxy Resin. Journal of Material Science & Engineering, 05(03). doi:10.4172/2169-0022.1000246 es_ES
dc.description.references Liminana, P., Garcia-Sanoguera, D., Quiles-Carrillo, L., Balart, R., & Montanes, N. (2018). Development and characterization of environmentally friendly composites from poly(butylene succinate) (PBS) and almond shell flour with different compatibilizers. Composites Part B: Engineering, 144, 153-162. doi:10.1016/j.compositesb.2018.02.031 es_ES
dc.description.references Barczewski, M., Sałasińska, K., & Szulc, J. (2019). Application of sunflower husk, hazelnut shell and walnut shell as waste agricultural fillers for epoxy-based composites: A study into mechanical behavior related to structural and rheological properties. Polymer Testing, 75, 1-11. doi:10.1016/j.polymertesting.2019.01.017 es_ES
dc.description.references Balart, J. F., Montanes, N., Fombuena, V., Boronat, T., & Sánchez-Nacher, L. (2017). Disintegration in Compost Conditions and Water Uptake of Green Composites from Poly(Lactic Acid) and Hazelnut Shell Flour. Journal of Polymers and the Environment, 26(2), 701-715. doi:10.1007/s10924-017-0988-3 es_ES
dc.description.references Sharma, H., Singh, I., & Misra, J. P. (2019). Mechanical and thermal behaviour of food waste (Citrus limetta peel) fillers–based novel epoxy composites. Polymers and Polymer Composites, 27(9), 527-535. doi:10.1177/0967391119851012 es_ES
dc.description.references Garcia-Garcia, D., Quiles-Carrillo, L., Montanes, N., Fombuena, V., & Balart, R. (2017). Manufacturing and Characterization of Composite Fibreboards with Posidonia oceanica Wastes with an Environmentally-Friendly Binder from Epoxy Resin. Materials, 11(1), 35. doi:10.3390/ma11010035 es_ES
dc.description.references Ferrero, B., Fombuena, V., Fenollar, O., Boronat, T., & Balart, R. (2014). Development of natural fiber-reinforced plastics (NFRP) based on biobased polyethylene and waste fibers from Posidonia oceanica seaweed. Polymer Composites, 36(8), 1378-1385. doi:10.1002/pc.23042 es_ES
dc.description.references Koutsomitopoulou, A. F., Bénézet, J. C., Bergeret, A., & Papanicolaou, G. C. (2014). Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technology, 255, 10-16. doi:10.1016/j.powtec.2013.10.047 es_ES
dc.description.references Naghmouchi, I., Espinach, F. X., Mutjé, P., & Boufi, S. (2015). Polypropylene composites based on lignocellulosic fillers: How the filler morphology affects the composite properties. Materials & Design (1980-2015), 65, 454-461. doi:10.1016/j.matdes.2014.09.047 es_ES
dc.description.references D’Amato, D., Veijonaho, S., & Toppinen, A. (2020). Towards sustainability? Forest-based circular bioeconomy business models in Finnish SMEs. Forest Policy and Economics, 110, 101848. doi:10.1016/j.forpol.2018.12.004 es_ES
dc.description.references Capezza, A. J., Lundman, M., Olsson, R. T., Newson, W. R., Hedenqvist, M. S., & Johansson, E. (2020). Carboxylated Wheat Gluten Proteins: A Green Solution for Production of Sustainable Superabsorbent Materials. Biomacromolecules, 21(5), 1709-1719. doi:10.1021/acs.biomac.9b01646 es_ES
dc.description.references Barczewski, M., Mysiukiewicz, O., & Kloziński, A. (2018). Complex modification effect of linseed cake as an agricultural waste filler used in high density polyethylene composites. Iranian Polymer Journal, 27(9), 677-688. doi:10.1007/s13726-018-0644-3 es_ES
dc.description.references Food and Agriculture Organizationhttp://www.fao.org es_ES
dc.description.references Zhang, Z.-S., Wang, L.-J., Li, D., Jiao, S.-S., Chen, X. D., & Mao, Z.-H. (2008). Ultrasound-assisted extraction of oil from flaxseed. Separation and Purification Technology, 62(1), 192-198. doi:10.1016/j.seppur.2008.01.014 es_ES
dc.description.references Bekhit, A. E.-D. A., Shavandi, A., Jodjaja, T., Birch, J., Teh, S., Mohamed Ahmed, I. A., … Bekhit, A. A. (2018). Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatalysis and Agricultural Biotechnology, 13, 129-152. doi:10.1016/j.bcab.2017.11.017 es_ES
dc.description.references Zhang, Z.-S., Wang, L.-J., Li, D., Li, S.-J., & Özkan, N. (2011). Characteristics of Flaxseed Oil from Two Different Flax Plants. International Journal of Food Properties, 14(6), 1286-1296. doi:10.1080/10942911003650296 es_ES
dc.description.references Mannucci, A., Castagna, A., Santin, M., Serra, A., Mele, M., & Ranieri, A. (2019). Quality of flaxseed oil cake under different storage conditions. LWT, 104, 84-90. doi:10.1016/j.lwt.2019.01.035 es_ES
dc.description.references Wirkijowska, A., Zarzycki, P., Sobota, A., Nawrocka, A., Blicharz-Kania, A., & Andrejko, D. (2020). The possibility of using by-products from the flaxseed industry for functional bread production. LWT, 118, 108860. doi:10.1016/j.lwt.2019.108860 es_ES
dc.description.references Chan, C. M., Vandi, L.-J., Pratt, S., Halley, P., Richardson, D., Werker, A., & Laycock, B. (2017). Composites of Wood and Biodegradable Thermoplastics: A Review. Polymer Reviews, 58(3), 444-494. doi:10.1080/15583724.2017.1380039 es_ES
dc.description.references España, J. M., Samper, M. D., Fages, E., Sánchez-Nácher, L., & Balart, R. (2013). Investigation of the effect of different silane coupling agents on mechanical performance of basalt fiber composite laminates with biobased epoxy matrices. Polymer Composites, 34(3), 376-381. doi:10.1002/pc.22421 es_ES
dc.description.references Bertomeu, D., García-Sanoguera, D., Fenollar, O., Boronat, T., & Balart, R. (2012). Use of eco-friendly epoxy resins from renewable resources as potential substitutes of petrochemical epoxy resins for ambient cured composites with flax reinforcements. Polymer Composites, 33(5), 683-692. doi:10.1002/pc.22192 es_ES
dc.description.references Samper, M. D., Fombuena, V., Boronat, T., García-Sanoguera, D., & Balart, R. (2012). Thermal and Mechanical Characterization of Epoxy Resins (ELO and ESO) Cured with Anhydrides. Journal of the American Oil Chemists’ Society. doi:10.1007/s11746-012-2041-y es_ES
dc.description.references Fombuena, V., L, S.-N., MD, S., D, J., & R, B. (2012). Study of the Properties of Thermoset Materials Derived from Epoxidized Soybean Oil and Protein Fillers. Journal of the American Oil Chemists’ Society, 90(3), 449-457. doi:10.1007/s11746-012-2171-2 es_ES
dc.description.references Carbonell-Verdu, A., Bernardi, L., Garcia-Garcia, D., Sanchez-Nacher, L., & Balart, R. (2015). Development of environmentally friendly composite matrices from epoxidized cottonseed oil. European Polymer Journal, 63, 1-10. doi:10.1016/j.eurpolymj.2014.11.043 es_ES
dc.description.references Anusic, A., Resch‐Fauster, K., Mahendran, A. R., & Wuzella, G. (2019). Anhydride Cured Bio‐Based Epoxy Resin: Effect of Moisture on Thermal and Mechanical Properties. Macromolecular Materials and Engineering, 304(7), 1900031. doi:10.1002/mame.201900031 es_ES
dc.description.references Quiles-Carrillo, L., Duart, S., Montanes, N., Torres-Giner, S., & Balart, R. (2018). Enhancement of the mechanical and thermal properties of injection-molded polylactide parts by the addition of acrylated epoxidized soybean oil. Materials & Design, 140, 54-63. doi:10.1016/j.matdes.2017.11.031 es_ES
dc.description.references Fenollar, O., Sanchez-Nacher, L., Garcia-Sanoguera, D., López, J., & Balart, R. (2009). The effect of the curing time and temperature on final properties of flexible PVC with an epoxidized fatty acid ester as natural-based plasticizer. Journal of Materials Science, 44(14), 3702-3711. doi:10.1007/s10853-009-3495-7 es_ES
dc.description.references Liu, X. Q., Huang, W., Jiang, Y. H., Zhu, J., & Zhang, C. Z. (2012). Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. Express Polymer Letters, 6(4), 293-298. doi:10.3144/expresspolymlett.2012.32 es_ES
dc.description.references Niedermann, P., Szebényi, G., & Toldy, A. (2015). Characterization of high glass transition temperature sugar-based epoxy resin composites with jute and carbon fibre reinforcement. Composites Science and Technology, 117, 62-68. doi:10.1016/j.compscitech.2015.06.001 es_ES
dc.description.references Niedermann, P., Szebényi, G., & Toldy, A. (2014). Effect of Epoxidized Soybean Oil on Curing, Rheological, Mechanical and Thermal Properties of Aromatic and Aliphatic Epoxy Resins. Journal of Polymers and the Environment, 22(4), 525-536. doi:10.1007/s10924-014-0673-8 es_ES
dc.description.references Wu, Y., Wang, Y., Yang, F., Wang, J., & Wang, X. (2020). Study on the Properties of Transparent Bamboo Prepared by Epoxy Resin Impregnation. Polymers, 12(4), 863. doi:10.3390/polym12040863 es_ES
dc.description.references Salasinska, K., Mizera, K., Barczewski, M., Borucka, M., Gloc, M., Celiński, M., & Gajek, A. (2019). The influence of degree of fragmentation of Pinus sibirica on flammability, thermal and thermomechanical behavior of the epoxy-composites. Polymer Testing, 79, 106036. doi:10.1016/j.polymertesting.2019.106036 es_ES
dc.description.references Kumar, R., Kumar, K., & Bhowmik, S. (2018). Mechanical characterization and quantification of tensile, fracture and viscoelastic characteristics of wood filler reinforced epoxy composite. Wood Science and Technology, 52(3), 677-699. doi:10.1007/s00226-018-0995-0 es_ES
dc.description.references Stabik, J., & Chomiak, M. (2016). Graded epoxy-hard coal composites: Analysis of filler particle distribution in the epoxy matrix. Journal of Composite Materials, 50(26), 3663-3677. doi:10.1177/0021998315623626 es_ES
dc.description.references Lascano, D., Quiles-Carrillo, L., Torres-Giner, S., Boronat, T., & Montanes, N. (2019). Optimization of the Curing and Post-Curing Conditions for the Manufacturing of Partially Bio-Based Epoxy Resins with Improved Toughness. Polymers, 11(8), 1354. doi:10.3390/polym11081354 es_ES
dc.description.references Agüero, Á., Lascano, D., Garcia-Sanoguera, D., Fenollar, O., & Torres-Giner, S. (2020). Valorization of Linen Processing By-Products for the Development of Injection-Molded Green Composite Pieces of Polylactide with Improved Performance. Sustainability, 12(2), 652. doi:10.3390/su12020652 es_ES
dc.description.references Bledzki, A. K., Mamun, A. A., & Volk, J. (2010). Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties. Composites Science and Technology, 70(5), 840-846. doi:10.1016/j.compscitech.2010.01.022 es_ES
dc.description.references Salasinska, K., Barczewski, M., Górny, R., & Kloziński, A. (2017). Evaluation of highly filled epoxy composites modified with walnut shell waste filler. Polymer Bulletin, 75(6), 2511-2528. doi:10.1007/s00289-017-2163-3 es_ES
dc.description.references Kwon, H.-J., Sunthornvarabhas, J., Park, J.-W., Lee, J.-H., Kim, H.-J., Piyachomkwan, K., … Cho, D. (2014). Tensile properties of kenaf fiber and corn husk flour reinforced poly(lactic acid) hybrid bio-composites: Role of aspect ratio of natural fibers. Composites Part B: Engineering, 56, 232-237. doi:10.1016/j.compositesb.2013.08.003 es_ES
dc.description.references https://www.novowood.it/en/download-technical-sheet-wpc_39c7.html es_ES
dc.description.references https://www.jeluplast.com/wp-content/uploads/2013/09/WPC-PE-H70-800-03.pdf es_ES
dc.description.references García-García, D., Carbonell, A., Samper, M. D., García-Sanoguera, D., & Balart, R. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering, 78, 256-265. doi:10.1016/j.compositesb.2015.03.080 es_ES
dc.description.references Yussuf, A. A., Massoumi, I., & Hassan, A. (2010). Comparison of Polylactic Acid/Kenaf and Polylactic Acid/Rise Husk Composites: The Influence of the Natural Fibers on the Mechanical, Thermal and Biodegradability Properties. Journal of Polymers and the Environment, 18(3), 422-429. doi:10.1007/s10924-010-0185-0 es_ES
dc.description.references Raju, G. U., & Kumarappa, S. (2012). Experimental Study on Mechanical and Thermal Properties of Epoxy Composites Filled with Agricultural Residue. Polymers from Renewable Resources, 3(3), 117-138. doi:10.1177/204124791200300303 es_ES
dc.description.references Chen, W.-H., & Kuo, P.-C. (2010). A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy, 35(6), 2580-2586. doi:10.1016/j.energy.2010.02.054 es_ES
dc.description.references Moriana, R., Vilaplana, F., & Ek, M. (2015). Forest residues as renewable resources for bio-based polymeric materials and bioenergy: chemical composition, structure and thermal properties. Cellulose, 22(5), 3409-3423. doi:10.1007/s10570-015-0738-4 es_ES
dc.description.references Sengupta, S., Maity, P., Ray, D., & Mukhopadhyay, A. (2013). Stearic acid as coupling agent in fly ash reinforced recycled polypropylene matrix composites: Structural, mechanical, and thermal characterizations. Journal of Applied Polymer Science, 130(3), 1996-2004. doi:10.1002/app.39413 es_ES
dc.description.references Mysiukiewicz, O., & Barczewski, M. (2018). Utilization of linseed cake as a postagricultural functional filler for poly(lactic acid) green composites. Journal of Applied Polymer Science, 136(10), 47152. doi:10.1002/app.47152 es_ES
dc.description.references Balart, J. F., García-Sanoguera, D., Balart, R., Boronat, T., & Sánchez-Nacher, L. (2016). Manufacturing and properties of biobased thermoplastic composites from poly(lactid acid) and hazelnut shell wastes. Polymer Composites, 39(3), 848-857. doi:10.1002/pc.24007 es_ES
dc.description.references Balart, J. F., Fombuena, V., Fenollar, O., Boronat, T., & Sánchez-Nacher, L. (2016). Processing and characterization of high environmental efficiency composites based on PLA and hazelnut shell flour (HSF) with biobased plasticizers derived from epoxidized linseed oil (ELO). Composites Part B: Engineering, 86, 168-177. doi:10.1016/j.compositesb.2015.09.063 es_ES
dc.description.references Liminana, P., Quiles-Carrillo, L., Boronat, T., Balart, R., & Montanes, N. (2018). The Effect of Varying Almond Shell Flour (ASF) Loading in Composites with Poly(Butylene Succinate (PBS) Matrix Compatibilized with Maleinized Linseed Oil (MLO). Materials, 11(11), 2179. doi:10.3390/ma11112179 es_ES
dc.description.references Reixach, R., Puig, J., Méndez, J. A., Gironès, J., Espinach, F. X., Arbat, G., & Mutjé, P. (2015). Orange Wood Fiber Reinforced Polypropylene Composites: Thermal Properties. BioResources, 10(2). doi:10.15376/biores.10.2.2156-2166 es_ES
dc.description.references Akil, H. M., Cheng, L. W., Mohd Ishak, Z. A., Abu Bakar, A., & Abd Rahman, M. A. (2009). Water absorption study on pultruded jute fibre reinforced unsaturated polyester composites. Composites Science and Technology, 69(11-12), 1942-1948. doi:10.1016/j.compscitech.2009.04.014 es_ES
dc.description.references Ferrero, B., Boronat, T., Moriana, R., Fenollar, O., & Balart, R. (2013). Green composites based on wheat gluten matrix and posidonia oceanica waste fibers as reinforcements. Polymer Composites, 34(10), 1663-1669. doi:10.1002/pc.22567 es_ES
dc.description.references Alander, B., Capezza, A. J., Wu, Q., Johansson, E., Olsson, R. T., & Hedenqvist, M. S. (2018). A facile way of making inexpensive rigid and soft protein biofoams with rapid liquid absorption. Industrial Crops and Products, 119, 41-48. doi:10.1016/j.indcrop.2018.03.069 es_ES
dc.description.references Ben Daly, H., Ben Brahim, H., Hfaied, N., Harchay, M., & Boukhili, R. (2007). Investigation of water absorption in pultruded composites containing fillers and low profile additives. Polymer Composites, 28(3), 355-364. doi:10.1002/pc.20243 es_ES
dc.description.references UDHAYASANKAR, R., & KATHIKEYAN, B. (2019). PREPARATION AND PROPERTIES OF CASHEW NUT SHELL LIQUID-BASED COMPOSITE REINFORCED BY COCONUT SHELL PARTICLES. Surface Review and Letters, 26(04), 1850174. doi:10.1142/s0218625x18501743 es_ES
dc.description.references Naghmouchi, I., Mutjé, P., & Boufi, S. (2014). Polyvinyl chloride composites filled with olive stone flour: Mechanical, thermal, and water absorption properties. Journal of Applied Polymer Science, 131(22), n/a-n/a. doi:10.1002/app.41083 es_ES
dc.description.references Thirmizir, M. Z. A., Ishak, Z. A. M., Taib, R. M., Sudin, R., & Leong, Y. W. (2011). Mechanical, Water Absorption and Dimensional Stability Studies of Kenaf Bast Fibre-Filled Poly(butylene succinate) Composites. Polymer-Plastics Technology and Engineering, 50(4), 339-348. doi:10.1080/03602559.2010.531871 es_ES
dc.description.references Ishak, Z. A. M., Yow, B. N., Ng, B. L., Khalil, H. P. S. A., & Rozman, H. D. (2001). Hygrothermal aging and tensile behavior of injection-molded rice husk-filled polypropylene composites. Journal of Applied Polymer Science, 81(3), 742-753. doi:10.1002/app.1491 es_ES
dc.description.references Sapuan, S. M., & Maleque, M. A. (2005). Design and fabrication of natural woven fabric reinforced epoxy composite for household telephone stand. Materials & Design, 26(1), 65-71. doi:10.1016/j.matdes.2004.03.015 es_ES
dc.subject.ods 12.- Garantizar las pautas de consumo y de producción sostenibles es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem