- -

Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mnatsakanyan, Hayk es_ES
dc.contributor.author Sabater i Serra, Roser es_ES
dc.contributor.author Rico Tortosa, Patricia María es_ES
dc.contributor.author Salmerón Sánchez, Manuel es_ES
dc.date.accessioned 2020-11-10T04:33:10Z
dc.date.available 2020-11-10T04:33:10Z
dc.date.issued 2018-09-11 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/154507
dc.description.abstract [EN] Myogenic regeneration occurs through a chain of events beginning with the output of satellite cells from quiescent state, formation of competent myoblasts and later fusion and differentiation into myofibres. Traditionally, growth factors are used to stimulate muscle regeneration but this involves serious off-target effects, including alterations in cell homeostasis and cancer. In this work, we have studied the use of zinc to trigger myogenic differentiation. We show that zinc promotes myoblast proliferation, differentiation and maturation of myofibres. We demonstrate that this process occurs through the PI3K/Akt pathway, via zinc stimulation of transporter Zip7. Depletion of zinc transporter Zip7 by RNA interference shows reduction of both PI3K/Akt signalling and a significant reduction of multinucleated myofibres and myotubes development. Moreover, we show that mature myofibres, obtained through stimulation with high concentrations of zinc, accumulate zinc and so we hypothesise their function as zinc reservoirs into the cell. es_ES
dc.description.sponsorship P.R. and R.S. acknowledges support from the Spanish Ministry of Economy and Competitiveness (MINECO) (MAT2015-69315-C3-1-R). P.R. acknowledges the Fondo Europeo de Desarrollo Regional (FEDER). CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. R.S. acknowledges the support from the Spanish MECD through the PRX16/00208 grant. MSS acknowledges support from the European Research Council (ERC - HealInSynergy 306990) and the UK Engineering and Physical Sciences Research Council (EPSRC - EP/P001114/1) es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/s41598-018-32067-0 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/306990/EU/Material-driven Fibronectin Fibrillogenesis to Engineer Synergistic Growth Factor Microenvironments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UKRI//EP%2FP001114%2F1/GB/Engineering growth factor microenvironments - a new therapeutic paradigm for regenerative medicine/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//PRX16%2F00208/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-69315-C3-1-R/ES/SOPORTES CELULARES BIODEGRADABLES CARGADOS CON IONES BIOACTIVOS PARA REGENERACION MUSCULAR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Biomateriales e Ingeniería Tisular - Centre de Biomaterials i Enginyeria Tissular es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Mnatsakanyan, H.; Sabater I Serra, R.; Rico Tortosa, PM.; Salmerón Sánchez, M. (2018). Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway. Scientific Reports. 8:1-14. https://doi.org/10.1038/s41598-018-32067-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1038/s41598-018-32067-0 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.identifier.pmid 30206294 es_ES
dc.identifier.pmcid PMC6133932 es_ES
dc.relation.pasarela S\368620 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder UK Research and Innovation es_ES
dc.contributor.funder Ministerio de Educación y Cultura es_ES
dc.contributor.funder Engineering and Physical Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Frontera, W. R. & Ochala, J. Skeletal muscle: a brief review of structure and function. Calcif. Tissue Int. 96, 183–195 (2015). es_ES
dc.description.references Wolfe, R. R., Frontera, W. R. & Ochala, J. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 84, 475–82 (2006). es_ES
dc.description.references Sciorati, C., Rigamonti, E., Manfredi, A. A. & Rovere-Querini, P. Cell death, clearance and immunity in the skeletal muscle. Cell Death Differ. 23, 927–937 (2016). es_ES
dc.description.references Wang, Y. X. & Rudnicki, M. A. Satellite cells, the engines of muscle repair. Nat. Rev. Mol. Cell Biol. 13, 127–133 (2011). es_ES
dc.description.references Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013). es_ES
dc.description.references Dhawan, J. & Rando, T. A. Stem cells in postnatal myogenesis: Molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666–673 (2005). es_ES
dc.description.references Yun, K. & Wold, B. Skeletal muscle determination and differentiation: Story of a core regulatory network and its context. Curr. Opin. Cell Biol. 8, 877–889 (1996). es_ES
dc.description.references Gharaibeh, B. et al. Biological approaches to improve skeletal muscle healing after injury and disease. Birth Defects Res. Part C Embryo Today Rev. 96, 82–94 (2012). es_ES
dc.description.references Schiaffino, S. & Mammucari, C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet. Muscle 1, 4 (2011). es_ES
dc.description.references Sandri, M. Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda). 23, 160–70 (2008). es_ES
dc.description.references Karalaki, M., Fili, S., Philippou, A. & Koutsilieris, M. Muscle regeneration: cellular and molecular events. In Vivo 23, 779–96 (2009). es_ES
dc.description.references Fujio, Y. et al. Cell cycle withdrawal promotes myogenic induction of Akt, a positive modulator of myocyte survival. Mol. Cell. Biol. 19, 5073–82 (1999). es_ES
dc.description.references Wilson, E. M. & Rotwein, P. Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J. Biol. Chem. 281, 29962–29971 (2006). es_ES
dc.description.references Sun, L., Liu, L., Yang, X. & Wu, Z. Akt binds prohibitin 2 and relieves its repression of MyoD and muscle differentiation. J. Cell Sci. 117, 3021–3029 (2004). es_ES
dc.description.references Milner, D. & Cameron, J. Muscle repair and regeneration: stem cells, scaffolds, and the contributions of skeletal muscle to amphibian limb regeneration. Curr. Top. Microbiol. Immunol. 367, 133–159 (2013). es_ES
dc.description.references Liu, C. et al. PI3K/Akt signaling transduction pathway is involved in rat vascular smooth muscle cell proliferation induced by apelin-13. Acta Biochim Biophys Sin 42, 396–402 (2010). es_ES
dc.description.references Eriksson, M., Taskinen, M. & Leppä, S. Mitogen Activated Protein Kinase-Dependent Activation of c-Jun and c-Fos is required for Neuronal differentiation but not for Growth and Stress Reposne in PC12 cells. J. Cell. Physiol. 207, 12–22 (2006). es_ES
dc.description.references Arsic, N. et al. Vascular endothelial growth factor stimulates skeletal muscle regeneration in Vivo. Mol. Ther. 10, 844–854 (2004). es_ES
dc.description.references Borselli, C. et al. Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc. Natl. Acad. Sci. USA 107, 3287–3292 (2010). es_ES
dc.description.references Hanft, J. R. et al. Phase I trial on the safety of topical rhVEGF on chronic neuropathic diabetic foot ulcers. J. Wound Care 17(30–2), 34–7 (2008). es_ES
dc.description.references Simón-Yarza, T. et al. Vascular endothelial growth factor-delivery systems for cardiac repair: An overview. Theranostics 2, 541–552 (2012). es_ES
dc.description.references Briquez, P. S., Hubbell, J. A. & Martino, M. M. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv. Wound Care 4, 479–489 (2015). es_ES
dc.description.references Barthel, A., Ostrakhovitch, E. A., Walter, P. L., Kampkötter, A. & Klotz, L. O. Stimulation of phosphoinositide 3-kinase/Akt signaling by copper and zinc ions: Mechanisms and consequences. Arch. Biochem. Biophys. 463, 175–182 (2007). es_ES
dc.description.references Ostrakhovitch, E. A., Lordnejad, M. R., Schliess, F., Sies, H. & Klotz, L.-O. Copper ions strongly activate the phosphoinositide-3-kinase/Akt pathway independent of the generation of reactive oxygen species. Arch. Biochem. Biophys. 397, 232–239 (2002). es_ES
dc.description.references Kaur, K., Gupta, R., Saraf, S. A. & Saraf, S. K. Zinc: The metal of life. Compr. Rev. Food Sci. Food Saf. 13, 358–376 (2014). es_ES
dc.description.references Coleman, J. E. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61, 897–946 (1992). es_ES
dc.description.references Fukada, T. & Kambe, T. Molecular and genetic features of zinc transporters in physiology and pathogenesis. Metallomics 3, 662–674 (2011). es_ES
dc.description.references Murakami, M. & Hirano, T. Intracellular zinc homeostasis and zinc signaling. Cancer Sci. 99, 1515–1522 (2008). es_ES
dc.description.references Hogstrand, C., Kille, P., Nicholson, R. I. & Taylor, K. M. Zinc transporters and cancer: a potential role for ZIP7 as a hub for tyrosine kinase activation. Trends Mol. Med. 15, 101–111 (2009). es_ES
dc.description.references Kolenko, V., Teper, E., Kutikov, A. & Uzzo, R. Zinc and zinc transporters in prostate carcinogenesis. Nat. Rev. Urol. 10, 219–26 (2013). es_ES
dc.description.references Myers, S. A., Nield, A., Chew, G. S. & Myers, M. A. The zinc transporter, Slc39a7 (Zip7) is implicated in glycaemic control in skeletal muscle cells. Plos One 8 (2013). es_ES
dc.description.references Kambe, T., Tsuji, T., Hashimoto, A. & Itsumura, N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol. Rev. 95, 749–784 (2015). es_ES
dc.description.references Jinno, N., Nagata, M. & Takahashi, T. Marginal zinc deficiency negatively affects recovery from muscle injury in mice. Biol. Trace Elem. Res. 158, 65–72 (2014). es_ES
dc.description.references Taylor, K. M., Hiscox, S., Nicholson, R. I., Hogstrand, C. & Kille, P. Protein Kinase CK2 Triggers Cytosolic Zinc Signaling Pathways by Phosphorylation of Zinc Channel ZIP7. Sci. Signal. 5, ra11–ra11 (2012). es_ES
dc.description.references Yamasaki, S. et al. Zinc is a novel intracellular second messenger. J. Cell Biol. 177, 637–45 (2007). es_ES
dc.description.references Sumitani, S., Goya, K., Testa, J. R., Kouhara, H. & Kasayama, S. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts. Endocrinology 143, 820–828 (2002). es_ES
dc.description.references Ohashi, K. et al. Zinc promotes proliferation and activation of myogenic cells via the PI3K/Akt and ERK signaling cascade. Exp. Cell Res. 333, 228–237 (2015). es_ES
dc.description.references Chesters, J. K. In Zinc in human biology 53, 109–118 (1989). es_ES
dc.description.references Burattini, S. et al. C2C12 murine myoblasts as a model of skeletal muscle development: Morpho-functional characterization. Eur. J. Histochem. 48, 223–233 (2004). es_ES
dc.description.references Mnatsakanyan, H. et al. Controlled Assembly of Fibronectin Nanofibrils Triggered by Random Copolymer Chemistry. ACS Appl. Mater. Interfaces 7, 18125–18135 (2015). es_ES
dc.description.references Jeong, J. & Eide, D. J. The SLC39 family of zinc transporters. Molecular Aspects of Medicine 34, 612–619 (2013). es_ES
dc.description.references Huang, L., Kirschke, C. P., Zhang, Y. & Yan, Y. Y. The ZIP7 gene (Slc39a7) encodes a zinc transporter involved in zinc homeostasis of the Golgi apparatus. J. Biol. Chem. 280, 15456–15463 (2005). es_ES
dc.description.references Vallee, B. L. & Falchuk, K. H. The biochemical basis of zinc physiology. Physiological reviews 73 (1993). es_ES
dc.description.references Ganju, N. & Eastman, A. Zinc inhibits Bax and Bak activation and cytochrome c release induced by chemical inducers of apoptosis but not by death-receptor-initiated pathways. Cell Death Differ. 10, 652–61 (2003). es_ES
dc.description.references Chai, F., Truong-Tran, A. Q., Ho, L. H. & Zalewski, P. D. Regulation of caspase activation and apoptosis by cellular zinc fluxes and zinc deprivation: A review. Immunol. Cell Biol. 77, 272–278 (1999). es_ES
dc.description.references Smith, P. J., Wiltshire, M., Furon, E., Beattie, J. H. & Errington, R. J. Impact of overexpression of metallothionein-1 on cell cycle progression and zinc toxicity. Am. J. Physiol. Cell Physiol. 295, C1399–C1408 (2008). es_ES
dc.description.references Bozym, R. A. et al. Free zinc ions outside a narrow concentration range are toxic to a variety of cells in vitro. Exp. Biol. Med. (Maywood). 235, 741–50 (2010). es_ES
dc.description.references Plum, L. M., Rink, L. & Hajo, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health 7, 1342–1365 (2010). es_ES
dc.description.references Chen, C.-J. & Liao, S.-L. Zinc toxicity on neonatal cortical neurons: involvement of glutathione chelation. J. Neurochem. 85, 443–453 (2003). es_ES
dc.description.references Chassot, A. A. et al. Confluence-induced cell cycle exit involves pre-mitotic CDK inhibition by p27Kip1 and cyclin D1 downregulation. Cell Cycle 7, 2038–2046 (2008). es_ES
dc.description.references Spencer, S. L. et al. XThe proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155, 369–383 (2013). es_ES
dc.description.references Walsh, K. & Perlman, H. Cell cycle exit upon myogenic differentiation. Curr. Opin. Genet. Dev. 7, 597–602 (1997). es_ES
dc.description.references Puri, P. L. & Sartorelli, V. Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications. Journal of Cellular Physiology 185, 155–173 (2000). es_ES
dc.description.references Zammit, P. S., Partridge, T. A. & Yablonka-Reuveni, Z. The skeletal muscle satellite cell: the stem cell that came in from the cold. J Histochem Cytochem 54, 1177–1191 (2006). es_ES
dc.description.references McCord, M. C. & Aizenman, E. The role of intracellular zinc release in aging, oxidative stress, and Alzheimer’s disease. Front. Aging Neurosci. 6, 1–16 (2014). es_ES
dc.description.references Dirksen, R. T. Sarcoplasmic reticulum–mitochondrial through-space coupling in skeletal muscle. This paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic. Appl. Physiol. Nutr. Metab. 34, 389–395 (2009). es_ES
dc.description.references Groth, C., Sasamura, T., Khanna, M. R., Whitley, M. & Fortini, M. E. Protein trafficking abnormalities in Drosophila tissues with impaired activity of the ZIP7 zinc transporter Catsup. Development 140, 3018–3027 (2013). es_ES
dc.description.references Ellis, C. D. et al. Zinc and the Msc2 zinc transporter protein are required for endoplasmic reticulum function. J. Cell Biol. 166, 325–335 (2004). es_ES
dc.description.references Koch, U., Lehal, R. & Radtke, F. Stem cells living with a Notch. Development 140, 689–704 (2013). es_ES
dc.description.references Gardner, S., Anguiano, M. & Rotwein, P. Defining Akt actions in muscle differentiation. Am. J. Physiol. Physiol. 303, C1292–C1300 (2012). es_ES
dc.description.references Knight, J. D. & Kothary, R. The myogenic kinome: protein kinases critical to mammalian skeletal myogenesis. Skelet. Muscle 1, 29 (2011). es_ES
dc.description.references Roth, S. M. Genetic aspects of skeletal muscle strength and mass with relevance to sarcopenia. Bonekey Rep. 1, 1–7 (2012). es_ES
dc.description.references Mebratu, Y. & Tesfaigzi, Y. How ERK1/2 Activation Controls Cell Proliferation and Cell Death Is Subcellular Localization the Answer? Cell Cycle 8, 1168–1175 (2009). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem