- -

Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Moreno-Rodríguez, José María es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author DÍAZ MORALES, URBANO MANUEL es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2020-11-17T04:32:13Z
dc.date.available 2020-11-17T04:32:13Z
dc.date.issued 2019-02-21 es_ES
dc.identifier.issn 2041-6520 es_ES
dc.identifier.uri http://hdl.handle.net/10251/155120
dc.description.abstract [EN] Novel MOF-type materials with different morphologies based on assembled 1D organic-inorganic subdomains were prepared using specific monodentate benzylcarboxylate spacers with functional substituents in the para-position as structure modulating agents. The combination of electronwithdrawing or electron-donating functions in the organic spacers with suitable solvothermal synthesis conditions allowed modulating the structuration level (2D or 3D), vacancies, physico-chemical properties and Lewis acidity strength of the metal-organic structures. Furthermore, bimetallic (Al/ Fe) MOF-type materials were synthesized by a one-pot direct process without modification of the structural framework. The activity of these hybrid materials as Lewis acid catalysts was evaluated to prepare cyanohydrins as precursors for the synthesis of biologically active compounds, and for aerobic oxidation of thiols to disulfides. The catalytic results showed that the derived MOFs exhibited modulatable Lewis acid capacities which are a function of the morphology, functionality of monodentate substituents present in the networks and a cooperative effect between metallic nodes of different nature. es_ES
dc.description.sponsorship The authors are grateful for financial support from the Spanish Government by MAT2014-52085-C2-1-P, MAT2017-82288-C2-1-P and Severo Ochoa Excellence Program SEV-2016-0683. J. M. M. acknowledges Predoctoral Fellowships from MINECO for economical support. The authors thank the MULTY2HYCAT (EU-Horizon 2020 funded project under grant agreement no. 720783). The European Union is also acknowledged by ERC-AdG-2014-671093-SynCatMatch. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Chemical Science es_ES
dc.rights Reconocimiento - No comercial (by-nc) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/c8sc04372h es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/720783/EU/MULTI-site organic-inorganic HYbrid CATalysts for MULTI-step chemical processes/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Moreno-Rodríguez, JM.; Velty, A.; Díaz Morales, UM.; Corma Canós, A. (2019). Synthesis of 2D and 3D MOFs with tuneable Lewis acidity from preformed 1D hybrid sub-domains. Chemical Science. 10(7):2053-2066. https://doi.org/10.1039/c8sc04372h es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/c8sc04372h es_ES
dc.description.upvformatpinicio 2053 es_ES
dc.description.upvformatpfin 2066 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 7 es_ES
dc.identifier.pmid 30842863 es_ES
dc.identifier.pmcid PMC6375358 es_ES
dc.relation.pasarela S\407665 es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Commission
dc.description.references Furukawa, H., Cordova, K. E., O’Keeffe, M., & Yaghi, O. M. (2013). The Chemistry and Applications of Metal-Organic Frameworks. Science, 341(6149), 1230444. doi:10.1126/science.1230444 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Horcajada, P., Serre, C., Vallet-Regí, M., Sebban, M., Taulelle, F., & Férey, G. (2006). Metal–Organic Frameworks as Efficient Materials for Drug Delivery. Angewandte Chemie, 118(36), 6120-6124. doi:10.1002/ange.200601878 es_ES
dc.description.references Lin, R., Liu, S., Ye, J., Li, X., & Zhang, J. (2016). Photoluminescent Metal–Organic Frameworks for Gas Sensing. Advanced Science, 3(7), 1500434. doi:10.1002/advs.201500434 es_ES
dc.description.references Reale, E., Leyva, A., Corma, A., Martínez, C., García, H., & Rey, F. (2005). A fluoride-catalyzed sol–gel route to catalytically active non-ordered mesoporous silica materials in the absence of surfactants. Journal of Materials Chemistry, 15(17), 1742. doi:10.1039/b415066j es_ES
dc.description.references Díaz, U., & Corma, A. (2016). Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coordination Chemistry Reviews, 311, 85-124. doi:10.1016/j.ccr.2015.12.010 es_ES
dc.description.references Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., … Férey, G. (2004). A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL-53) Upon Hydration. Chemistry - A European Journal, 10(6), 1373-1382. doi:10.1002/chem.200305413 es_ES
dc.description.references Volkringer, C., Leclerc, H., Lavalley, J.-C., Loiseau, T., Férey, G., Daturi, M., & Vimont, A. (2012). Infrared Spectroscopy Investigation of the Acid Sites in the Metal–Organic Framework Aluminum Trimesate MIL-100(Al). The Journal of Physical Chemistry C, 116(9), 5710-5719. doi:10.1021/jp210671t es_ES
dc.description.references Klein, N., Hoffmann, H. C., Cadiau, A., Getzschmann, J., Lohe, M. R., Paasch, S., … Kaskel, S. (2012). Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M = Ni, Cu, Co, Zn) metal–organic frameworks. Journal of Materials Chemistry, 22(20), 10303. doi:10.1039/c2jm15601f es_ES
dc.description.references Garibay, S. J., & Cohen, S. M. (2010). Isoreticular synthesis and modification of frameworks with the UiO-66 topology. Chemical Communications, 46(41), 7700. doi:10.1039/c0cc02990d es_ES
dc.description.references Katz, M. J., Brown, Z. J., Colón, Y. J., Siu, P. W., Scheidt, K. A., Snurr, R. Q., … Farha, O. K. (2013). A facile synthesis of UiO-66, UiO-67 and their derivatives. Chemical Communications, 49(82), 9449. doi:10.1039/c3cc46105j es_ES
dc.description.references Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113 es_ES
dc.description.references Schlichte, K., Kratzke, T., & Kaskel, S. (2004). Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 73(1-2), 81-88. doi:10.1016/j.micromeso.2003.12.027 es_ES
dc.description.references Cui, X., Xu, M.-C., Zhang, L.-J., Yao, R.-X., & Zhang, X.-M. (2015). Solvent-free heterogeneous catalysis for cyanosilylation in a dynamic cobalt-MOF. Dalton Transactions, 44(28), 12711-12716. doi:10.1039/c5dt01456e es_ES
dc.description.references Mo, K., Yang, Y., & Cui, Y. (2014). A Homochiral Metal–Organic Framework as an Effective Asymmetric Catalyst for Cyanohydrin Synthesis. Journal of the American Chemical Society, 136(5), 1746-1749. doi:10.1021/ja411887c es_ES
dc.description.references Gomez, G. E., Kaczmarek, A. M., Van Deun, R., Brusau, E. V., Narda, G. E., Vega, D., … Monge, M. Á. (2016). Photoluminescence, Unconventional-Range Temperature Sensing, and Efficient Catalytic Activities of Lanthanide Metal-Organic Frameworks. European Journal of Inorganic Chemistry, 2016(10), 1577-1588. doi:10.1002/ejic.201501402 es_ES
dc.description.references Telalović, S., & Hanefeld, U. (2011). Investigation of the cyanosilylation catalysed by metal-siliceous catalysts. Catalysis Communications, 12(6), 493-496. doi:10.1016/j.catcom.2010.11.012 es_ES
dc.description.references Iwanami, K., Choi, J.-C., Lu, B., Sakakura, T., & Yasuda, H. (2008). Remarkable acceleration of cyanosilylation by the mesoporous Al-MCM-41 catalyst. Chemical Communications, (8), 1002. doi:10.1039/b718462j es_ES
dc.description.references Millward, A. R., & Yaghi, O. M. (2005). Metal−Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature. Journal of the American Chemical Society, 127(51), 17998-17999. doi:10.1021/ja0570032 es_ES
dc.description.references Siu, P. W., Brown, Z. J., Farha, O. K., Hupp, J. T., & Scheidt, K. A. (2013). A mixed dicarboxylate strut approach to enhancing catalytic activity of a de novo urea derivative of metal–organic framework UiO-67. Chemical Communications, 49(93), 10920. doi:10.1039/c3cc47177b es_ES
dc.description.references Biswas, S., Ahnfeldt, T., & Stock, N. (2011). New Functionalized Flexible Al-MIL-53-X (X = -Cl, -Br, -CH3, -NO2, -(OH)2) Solids: Syntheses, Characterization, Sorption, and Breathing Behavior. Inorganic Chemistry, 50(19), 9518-9526. doi:10.1021/ic201219g es_ES
dc.description.references Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565 es_ES
dc.description.references Santiago-Portillo, A., Navalón, S., Concepción, P., Álvaro, M., & García, H. (2017). Influence of Terephthalic Acid Substituents on the Catalytic Activity of MIL-101(Cr) in Three Lewis Acid Catalyzed Reactions. ChemCatChem, 9(13), 2506-2511. doi:10.1002/cctc.201700236 es_ES
dc.description.references Kim, M., Cahill, J. F., Fei, H., Prather, K. A., & Cohen, S. M. (2012). Postsynthetic Ligand and Cation Exchange in Robust Metal–Organic Frameworks. Journal of the American Chemical Society, 134(43), 18082-18088. doi:10.1021/ja3079219 es_ES
dc.description.references Yang, X., & Xu, Q. (2017). Bimetallic Metal–Organic Frameworks for Gas Storage and Separation. Crystal Growth & Design, 17(4), 1450-1455. doi:10.1021/acs.cgd.7b00166 es_ES
dc.description.references Sun, Q., Liu, M., Li, K., Han, Y., Zuo, Y., Chai, F., … Guo, X. (2017). Synthesis of Fe/M (M = Mn, Co, Ni) bimetallic metal organic frameworks and their catalytic activity for phenol degradation under mild conditions. Inorganic Chemistry Frontiers, 4(1), 144-153. doi:10.1039/c6qi00441e es_ES
dc.description.references Dolgopolova, E. A., Brandt, A. J., Ejegbavwo, O. A., Duke, A. S., Maddumapatabandi, T. D., Galhenage, R. P., … Shustova, N. B. (2017). Electronic Properties of Bimetallic Metal–Organic Frameworks (MOFs): Tailoring the Density of Electronic States through MOF Modularity. Journal of the American Chemical Society, 139(14), 5201-5209. doi:10.1021/jacs.7b01125 es_ES
dc.description.references Zou, R., Li, P.-Z., Zeng, Y.-F., Liu, J., Zhao, R., Duan, H., … Zhao, Y. (2016). Bimetallic Metal-Organic Frameworks: Probing the Lewis Acid Site for CO2Conversion. Small, 12(17), 2334-2343. doi:10.1002/smll.201503741 es_ES
dc.description.references Yoon, M., Srirambalaji, R., & Kim, K. (2011). Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chemical Reviews, 112(2), 1196-1231. doi:10.1021/cr2003147 es_ES
dc.description.references Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., … De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030g es_ES
dc.description.references Ravon, U., Savonnet, M., Aguado, S., Domine, M. E., Janneau, E., & Farrusseng, D. (2010). Engineering of coordination polymers for shape selective alkylation of large aromatics and the role of defects. Microporous and Mesoporous Materials, 129(3), 319-329. doi:10.1016/j.micromeso.2009.06.008 es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Alaerts, L., Séguin, E., Poelman, H., Thibault-Starzyk, F., Jacobs, P. A., & De Vos, D. E. (2006). Probing the Lewis Acidity and Catalytic Activity of the Metal–Organic Framework [Cu3(btc)2] (BTC=Benzene-1,3,5-tricarboxylate). Chemistry - A European Journal, 12(28), 7353-7363. doi:10.1002/chem.200600220 es_ES
dc.description.references Pathan, N. B., Rahatgaonkar, A. M., & Chorghade, M. S. (2011). Metal-organic framework Cu3 (BTC)2(H2O)3 catalyzed Aldol synthesis of pyrimidine-chalcone hybrids. Catalysis Communications, 12(12), 1170-1176. doi:10.1016/j.catcom.2011.03.040 es_ES
dc.description.references Gregory, R. J. H. (1999). Cyanohydrins in Nature and the Laboratory:  Biology, Preparations, and Synthetic Applications. Chemical Reviews, 99(12), 3649-3682. doi:10.1021/cr9902906 es_ES
dc.description.references Brunel, J.-M., & Holmes, I. P. (2004). Chemically Catalyzed Asymmetric Cyanohydrin Syntheses. Angewandte Chemie International Edition, 43(21), 2752-2778. doi:10.1002/anie.200300604 es_ES
dc.description.references Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2013). Indium metal–organic frameworks as catalysts in solvent-free cyanosilylation reaction. CrystEngComm, 15(45), 9562. doi:10.1039/c3ce41123k es_ES
dc.description.references Aguirre-Díaz, L. M., Iglesias, M., Snejko, N., Gutiérrez-Puebla, E., & Monge, M. Á. (2015). Toward understanding the structure–catalyst activity relationship of new indium MOFs as catalysts for solvent-free ketone cyanosilylation. RSC Advances, 5(10), 7058-7065. doi:10.1039/c4ra13924k es_ES
dc.description.references Lacour, M.-A., Rahier, N. J., & Taillefer, M. (2011). Mild and Efficient Trimethylsilylcyanation of Ketones Catalysed by PNP Chloride. Chemistry - A European Journal, 17(44), 12276-12279. doi:10.1002/chem.201101195 es_ES
dc.description.references Yang, T., Bartoszewicz, A., Ju, J., Sun, J., Liu, Z., Zou, X., … Lin, J. (2011). Microporous Aluminoborates with Large Channels: Structural and Catalytic Properties. Angewandte Chemie International Edition, 50(52), 12555-12558. doi:10.1002/anie.201106310 es_ES
dc.description.references Ogasawara, Y., Uchida, S., Yamaguchi, K., & Mizuno, N. (2009). A Tin-Tungsten Mixed Oxide as an Efficient Heterogeneous Catalyst for CC Bond-Forming Reactions. Chemistry - A European Journal, 15(17), 4343-4349. doi:10.1002/chem.200802536 es_ES
dc.description.references DeSimone, J. M. (2002). Practical Approaches to Green Solvents. Science, 297(5582), 799-803. doi:10.1126/science.1069622 es_ES
dc.description.references Zhang, Z., Chen, J., Bao, Z., Chang, G., Xing, H., & Ren, Q. (2015). Insight into the catalytic properties and applications of metal–organic frameworks in the cyanosilylation of aldehydes. RSC Advances, 5(97), 79355-79360. doi:10.1039/c5ra13102b es_ES
dc.description.references Procopio, A., Das, G., Nardi, M., Oliverio, M., & Pasqua, L. (2008). A Mesoporous ErIII-MCM-41 Catalyst for the Cyanosilylation of Aldehydes and Ketones under Solvent-free Conditions. ChemSusChem, 1(11), 916-919. doi:10.1002/cssc.200800183 es_ES
dc.description.references Dhakshinamoorthy, A., Alvaro, M., & Garcia, H. (2010). Aerobic oxidation of thiols to disulfides using iron metal–organic frameworks as solid redox catalysts. Chemical Communications, 46(35), 6476. doi:10.1039/c0cc02210a es_ES
dc.description.references Rapeyko, A., Climent, M. J., Corma, A., Concepción, P., & Iborra, S. (2015). Postsynthesis-Treated Iron-Based Metal-Organic Frameworks as Selective Catalysts for the Sustainable Synthesis of Nitriles. ChemSusChem, 8(19), 3270-3282. doi:10.1002/cssc.201500695 es_ES
dc.description.references Saxena, A., Kumar, A., & Mozumdar, S. (2007). Ni-nanoparticles: An efficient green catalyst for chemo-selective oxidative coupling of thiols. Journal of Molecular Catalysis A: Chemical, 269(1-2), 35-40. doi:10.1016/j.molcata.2006.12.042 es_ES
dc.description.references Oba, M., Tanaka, K., Nishiyama, K., & Ando, W. (2011). Aerobic Oxidation of Thiols to Disulfides Catalyzed by Diaryl Tellurides under Photosensitized Conditions. The Journal of Organic Chemistry, 76(10), 4173-4177. doi:10.1021/jo200496r es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem