- -

On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design

Mostrar el registro completo del ítem

Jiménez, J.; Blasco, S.; Blanco, E.; Atienzar Corvillo, PE.; Del Pozo, M.; Quintana, C. (2019). On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design. ChemistrySelect. 4(24):7036-7041. https://doi.org/10.1002/slct.201901127

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/155301

Ficheros en el ítem

Metadatos del ítem

Título: On-Surface Cucurbit[n]uril Supramolecular Recognition for an Optical Sensor Design
Autor: Jiménez, Javier Blasco, Sonia Blanco, Elias Atienzar Corvillo, Pedro Enrique del Pozo, María Quintana, Carmen
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Fecha difusión:
Resumen:
[EN] A novel optical sensor, based on the use of the macrocyclic receptor cucurbit[7]uril as molecular selector taking part of a sensing poly(vinyl chloride)-based membrane immobilized onto a quartz slide surface, has been ...[+]
Palabras clave: Cucurbituril , Fungicide , Membrane , Sensors , Thiabendazole
Derechos de uso: Reserva de todos los derechos
Fuente:
ChemistrySelect. (eissn: 2365-6549 )
DOI: 10.1002/slct.201901127
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/slct.201901127
Código del Proyecto:
info:eu-repo/grantAgreement/CAM//P2018%2FNMT-4349/
Descripción: This is the peer reviewed version of the following article: ChemistrySelect 2019, 4, 7036 7041, which has been published in final form at https://doi.org/10.1002/slct.201901127. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Agradecimientos:
The authors would like to thank the Comunidad Autonoma de Madrid (P2018/NMT-4349, TRANSNANOAVANSENS-CM) for financial support.
Tipo: Artículo

References

Montes-Navajas, P., Baumes, L. A., Corma, A., & Garcia, H. (2009). Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host–guest complexation. Tetrahedron Letters, 50(20), 2301-2304. doi:10.1016/j.tetlet.2009.02.189

Telting-Diaz, M., & Bakker, E. (2002). Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry, 74(20), 5251-5256. doi:10.1021/ac025596i

Uttam, B., Hussain, M. A., Joshi, S., & Rao, C. P. (2018). Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition. ACS Omega, 3(12), 16989-16999. doi:10.1021/acsomega.8b02848 [+]
Montes-Navajas, P., Baumes, L. A., Corma, A., & Garcia, H. (2009). Dual-response colorimetric sensor array for the identification of amines in water based on supramolecular host–guest complexation. Tetrahedron Letters, 50(20), 2301-2304. doi:10.1016/j.tetlet.2009.02.189

Telting-Diaz, M., & Bakker, E. (2002). Mass-Produced Ionophore-Based Fluorescent Microspheres for Trace Level Determination of Lead Ions. Analytical Chemistry, 74(20), 5251-5256. doi:10.1021/ac025596i

Uttam, B., Hussain, M. A., Joshi, S., & Rao, C. P. (2018). Physicochemical and Ion-Sensing Properties of Benzofurazan-Appended Calix[4]arene in Solution and on Gold Nanoparticles: Spectroscopy, Microscopy, and DFT Computations in Support of the Species of Recognition. ACS Omega, 3(12), 16989-16999. doi:10.1021/acsomega.8b02848

Shamsipur, M., Sadeghi, M., Beyzavi, M. H., & Sharghi, H. (2015). Development of a novel fluorimetric bulk optode membrane based on meso-tetrakis(2-hydroxynaphthyl) porphyrin (MTHNP) for highly sensitive and selective monitoring of trace amounts of Hg2+ ions. Materials Science and Engineering: C, 48, 424-433. doi:10.1016/j.msec.2014.12.030

Cano-Raya, C., Fernández-Ramos, M. D., Gómez-Sánchez, J., & Capitán-Vallvey, L. F. (2006). Irreversible optical sensor for mercury determination based on tetraarylborate decomposition. Sensors and Actuators B: Chemical, 117(1), 135-142. doi:10.1016/j.snb.2005.11.009

Sahari, A., Ruckh, T. T., Hutchings, R., & Clark, H. A. (2015). Development of an Optical Nanosensor Incorporating a pH-Sensitive Quencher Dye for Potassium Imaging. Analytical Chemistry, 87(21), 10684-10687. doi:10.1021/acs.analchem.5b03080

Assaf, K. I., & Nau, W. M. (2015). Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chemical Society Reviews, 44(2), 394-418. doi:10.1039/c4cs00273c

Ganguly, A., Ghosh, S., & Guchhait, N. (2016). Inclusion of an Anthracene-based Fluorophore within Molecular Containers: A Comparative Study of the Cucurbituril and Cyclodextrin Host Families. The Journal of Physical Chemistry B, 120(19), 4421-4430. doi:10.1021/acs.jpcb.6b04178

Rankin, M. A., & Wagner, B. D. (2004). Fluorescence Enhancement of Curcumin upon Inclusion into Cucurbituril. Supramolecular Chemistry, 16(7), 513-519. doi:10.1080/10610270412331283583

Geng, Q.-X., Cong, H., Tao, Z., Lindoy, L. F., & Wei, G. (2015). Cucurbit[7]uril-improved recognition by a fluorescent sensor for cadmium and zinc cations. Supramolecular Chemistry, 28(9-10), 784-791. doi:10.1080/10610278.2015.1117614

Smith, L. C., Leach, D. G., Blaylock, B. E., Ali, O. A., & Urbach, A. R. (2015). Sequence-Specific, Nanomolar Peptide Binding via Cucurbit[8]uril-Induced Folding and Inclusion of Neighboring Side Chains. Journal of the American Chemical Society, 137(10), 3663-3669. doi:10.1021/jacs.5b00718

Lazar, A. I., Biedermann, F., Mustafina, K. R., Assaf, K. I., Hennig, A., & Nau, W. M. (2016). Nanomolar Binding of Steroids to Cucurbit[n]urils: Selectivity and Applications. Journal of the American Chemical Society, 138(39), 13022-13029. doi:10.1021/jacs.6b07655

Del Pozo, M., Fernández, Á., & Quintana, C. (2018). On-line competitive host-guest interactions in a turn-on fluorometric method to amantadine determination in human serum and pharmaceutical formulations. Talanta, 179, 124-130. doi:10.1016/j.talanta.2017.10.064

Pozo, M. del, Blanco, E., Fatás, E., Hernández, P., & Quintana, C. (2012). New supramolecular interactions for electrochemical sensors development: different cucurbit[8]uril sensing platform designs. The Analyst, 137(18), 4302. doi:10.1039/c2an35325c

Del Pozo, M., Hernández, P., Hernández, L., & Quintana, C. (2011). The use of cucurbit[8]uril host–guest interactions in the development of an electrochemical sensor: characterization and application to tryptophan determination. Journal of Materials Chemistry, 21(35), 13657. doi:10.1039/c1jm12063h

Del Pozo, M., Mejías, J., Hernández, P., & Quintana, C. (2014). Cucurbit[8]uril-based electrochemical sensors as detectors in flow injection analysis. Application to dopamine determination in serum samples. Sensors and Actuators B: Chemical, 193, 62-69. doi:10.1016/j.snb.2013.11.074

Demets, G. J.-F., Schneider, B. V. S., Correia, H. D., Gonçalves, R. R., Nobre, T. M., & Darbello Zaniquelli, M. E. (2008). A Technique to Produce Thin Cucurbit[6]uril Films. Journal of Nanoscience and Nanotechnology, 8(1), 432-435. doi:10.1166/jnn.2008.051

Liu, M., Kan, J., Yao, Y., Zhang, Y., Bian, B., Tao, Z., … Xiao, X. (2019). Facile preparation and application of luminescent cucurbit[10]uril-based porous supramolecular frameworks. Sensors and Actuators B: Chemical, 283, 290-297. doi:10.1016/j.snb.2018.12.024

Nicolas, H., Yuan, B., Zhang, J., Zhang, X., & Schönhoff, M. (2015). Cucurbit[8]uril as Nanocontainer in a Polyelectrolyte Multilayer Film: A Quantitative and Kinetic Study of Guest Uptake. Langmuir, 31(39), 10734-10742. doi:10.1021/acs.langmuir.5b02806

Nicolas, H., Yuan, B., Zhang, X., & Schönhoff, M. (2016). Cucurbit[8]uril-Containing Multilayer Films for the Photocontrolled Binding and Release of a Guest Molecule. Langmuir, 32(10), 2410-2418. doi:10.1021/acs.langmuir.6b00128

Del Pozo, M., Alonso, M., Hernández, L., & Quintana, C. (2010). An Electrochemical Approach for the Cucurbit[7]uril/Carbendazim Supramolecular Inclusion Complex. Application to Carbendazim Determination in Apples. Electroanalysis, 23(1), 189-195. doi:10.1002/elan.201000442

Saleh, N., Koner, A. L., & Nau, W. M. (2008). Activation and Stabilization of Drugs by Supramolecular pKaShifts: Drug‐Delivery Applications Tailored for Cucurbiturils. Angewandte Chemie International Edition, 47(29), 5398-5401. doi:10.1002/anie.200801054

http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database/;

Yu, F., Su, M., Tian, L., Wang, H., & Liu, H. (2018). Organic Solvent as Internal Standards for Quantitative and High-Throughput Liquid Interfacial SERS Analysis in Complex Media. Analytical Chemistry, 90(8), 5232-5238. doi:10.1021/acs.analchem.8b00008

Chen, Q., Zuo, J., He, X., Mo, X., Tong, P., & Zhang, L. (2017). Enhanced fluorescence of terbium with thiabendazole and application in determining trace amounts of terbium and thiabendazole. Talanta, 162, 540-546. doi:10.1016/j.talanta.2016.10.036

ASGHAR, M., YAQOOB, M., MUNAWAR, N., & NABI, A. (2016). Flow-Injection Determination of Thiabendazole Fungicide in Water Samples Using a Diperiodatocuprate(III)–Sulfuric Acid–Chemiluminescence System. Analytical Sciences, 32(3), 337-342. doi:10.2116/analsci.32.337

Sousa, E. S., Pinto, L., & de Araujo, M. C. U. (2017). A chemometric cleanup using multivariate curve resolution in liquid chromatography: Quantification of pesticide residues in vegetables. Microchemical Journal, 134, 131-139. doi:10.1016/j.microc.2017.05.017

Oliveira, A. M., Loureiro, H. C., de Jesus, F. F. S., & de Jesus, D. P. (2017). Electromembrane extraction and preconcentration of carbendazim and thiabendazole in water samples before capillary electrophoresis analysis. Journal of Separation Science, 40(7), 1532-1539. doi:10.1002/jssc.201601305

Smitka, J., Lemos, A., Porel, M., Jockusch, S., Belderrain, T. R., Tesařová, E., & Da Silva, J. P. (2014). Phototransformation of benzimidazole and thiabendazole inside cucurbit[8]uril. Photochem. Photobiol. Sci., 13(2), 310-315. doi:10.1039/c3pp50336d

Montes-Navajas, P., Corma, A., & Garcia, H. (2008). Complexation and Fluorescence of Tricyclic Basic Dyes Encapsulated in Cucurbiturils. ChemPhysChem, 9(5), 713-720. doi:10.1002/cphc.200700735

Shewale, M. N., Lande, D. N., & Gejji, S. P. (2016). Encapsulation of benzimidazole derivatives within cucurbit[7]uril: Density functional investigations. Journal of Molecular Liquids, 216, 309-317. doi:10.1016/j.molliq.2015.12.076

An, Q., Dong, C., Zhu, W., Tao, C., Yang, H., Wang, Y., & Li, G. (2012). Cucurbit[8]uril as Building Block for Facile Fabrication of Well-Defined Organic Crystalline Nano-objects with Multiple Morphologies and Compositions. Small, 8(4), 562-568. doi:10.1002/smll.201101933

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem